Applied Biochemistry and Biotechnology

, Volume 168, Issue 6, pp 1694–1717

Engineering Glucosinolates in Plants: Current Knowledge and Potential Uses

  • Venkidasamy Baskar
  • Mayank Anand Gururani
  • Jae Woong Yu
  • Se Won Park
Article

Abstract

Glucosinolates (GSL) and their derivatives are well known for the characteristic roles they play in plant defense as signaling molecules and as bioactive compounds for human health. More than 130 GSLs have been reported so far, and most of them belong to the Brassicaceae family. Several enzymes and transcription factors involved in the GSL biosynthesis have been studied in the model plant, Arabidopsis, and in a few other Brassica crop species. Recent studies in GSL research have defined the regulation, distribution, and degradation of GSL biosynthetic pathways; however, the underlying mechanism behind transportation of GSLs in plants is still largely unknown. This review highlights the recent advances in the metabolic engineering of GSLs in plants and discusses their potential applications.

Keywords

Brassicaceae Glucosinolate Myrosinase Transgenic 

Abbreviations

GSLs

Glucosinolates

ITC

Isothiocynate

QTL

Quantitative trait loci

AGSL

Aliphatic glucosinolate

IGSL

Indole glucosinolate

BGSL

Benzoic glucosinolate

MBP

Myrosinase-binding protein

MyAP

Myrosinase-associated protein

SF

Sulforaphane

References

  1. 1.
    Kliebenstein, D. J., Kroymann, J., & Mitchell-Olds, T. (2005). Current Opinion in Plant Biology, 8, 264–271.Google Scholar
  2. 2.
    Woodward, A. W., & Bartel, B. (2005). Annals of Botany (London), 95, 707–735.Google Scholar
  3. 3.
    Mithen, R., et al. (2000). Journal of the Science of Food and Agriculture, 80, 967–984.Google Scholar
  4. 4.
    Talalay, P., & Fahey, J. W. (2001). The Journal of Nutrition, 131, 3027S–3033S.Google Scholar
  5. 5.
    Keum, Y. S., Jeong, W. S., & Kong, A. N. (2004). Mutation Research, 555, 191–202.Google Scholar
  6. 6.
    Kelly, P. J., Bones, A., & Rossiter, J. T. (1998). Planta, 206, 370–377.Google Scholar
  7. 7.
    Agerbirk, N., & Olsen, C. E. (2012). Phytochemistry, 77, 16–45.Google Scholar
  8. 8.
    Fahey, J. W., Zalcmann, A. T., & Talalay, P. (2001). Phytochemistry, 56, 5–51.Google Scholar
  9. 9.
    Rask, L., Andreasson, E., Ekbom, B., Eriksson, S., Pontoppidan, B., & Meijer, J. (2000). Plant Molecular Biology, 42, 93–113.Google Scholar
  10. 10.
    Luthy, B., & Matile, P. (1984). Biochemistry Physiology Pflanz, 179, 5–12.Google Scholar
  11. 11.
    Ratzka, A., Vogel, H., Kleibenstein, D. J., Mitchell-Olds, T., & Kroymann, J. (2002). Proceedings of the National Academy of Sciences of the United States of America, 99, 11223–11228.Google Scholar
  12. 12.
    Ahuja, I., Borgen, B. H., Hansen, M., Honne, B. I., Müller, C., Rohloff, J., et al. (2011). Journal of Experimental Botany. doi:10.1093/jxb/err195.
  13. 13.
    Halkier, B. A., & Gershenzon, J. (2006). Annual Review of Plant Biology, 57, 303–333.Google Scholar
  14. 14.
    Wittstock, U., & Halkier, B. A. (2002). Trends in Plant Science, 7, 263–270.Google Scholar
  15. 15.
    Sørensen, H. (1990). Glucosinolates: structure, properties, function. In F. Shadidi (Ed.), Canola and rapeseed (pp. 149–172). New York: AVI Book.Google Scholar
  16. 16.
    Kliebenstein, D. J., Kroymann, J., Brown, P., Figuth, A., Pedersen, D., Gershenzon, J., et al. (2001). Plant Physiology, 126, 811–825.Google Scholar
  17. 17.
    Brown, P. D., Tokuhisa, J. G., Reichelt, M., & Gershenzon, J. (2003). Phytochemistry, 62, 471–481.Google Scholar
  18. 18.
    Sonderby, I. E., Geu-Flores, F., & Halkier, B. A. (2010). Trends in Plant Science, 15(5), 283–290.Google Scholar
  19. 19.
    Shroff, R., Vergara, F., Muck, A., Svato, A., & Gershenzon, S. J. (2008). Proceedings of the National Academy of Sciences of the United States of America, 105, 16.Google Scholar
  20. 20.
    Koroleva, O. A., Gibson, T. M., Cramer, R., & Stain, C. (2010). The Plant Journal, 64, 456–469.Google Scholar
  21. 21.
    Sarsby, J., Mark, W., Towers, M. W., Stain, C., Cramer, R., & Koroleva, O. A. (2012). Phytochemistry, 77, 110–118.Google Scholar
  22. 22.
    Schonhof, I., Krumbein, A., Schreiner, M., Gutezeit, B.(1999). The Royal Society of Chemistry, Cambridge.Google Scholar
  23. 23.
    Rangkadilok, N., Nicolas, M. E., Bennett, R. N., & Premier, R. R. (2002). Scientia Horticulturae, 96, 27–41.Google Scholar
  24. 24.
    He, H., Fingerling, G., & Schnitzler, W. H. (2000). Journal of Applied Botany Food Quality, 74, 21–25.Google Scholar
  25. 25.
    Bones, A. M. (1990). Journal of Experimental Botany, 41, 737–744.Google Scholar
  26. 26.
    Dul, C., & Halkier, B. A. (1998). Phytochemistry, 48, 1145–1150.Google Scholar
  27. 27.
    Reese, E. T., Clapp, R. C., & Mandels, M. (1958). Archives of Biochemistry and Biophysics, 75, 228–242.Google Scholar
  28. 28.
    Ohtsuru, M., Tsuruo, I., & Hata, T. (1973). Agricultural Biology Chemical, 37, 967–971.Google Scholar
  29. 29.
    Tani, N., Ohtsuru, M., & Hata, T. (1974). Agricultural Biology Chemical, 38, 1617–1622.Google Scholar
  30. 30.
    Oginsky, E. L., Stein, A. E., & Greer, M. A. (1965). Proceedings of the Society for Experimental Biology and Medicine, 119, 360–364.Google Scholar
  31. 31.
    Rabot, S., Nugon-Baudon, L., Raibaud, P., & Szylit, O. (1993). The British Journal of Nutrition, 70, 323–331.Google Scholar
  32. 32.
    Elfoul, L., Rabot, S., Khelifa, N., Quinsac, A., Duguay, A., & Rimbault, A. (2001). FEMS Microbiology Letters, 197, 99–103.Google Scholar
  33. 33.
    Cheng, D. L., Hashimoto, K., & Uda, Y. (2004). Food and Chemical Toxicology, 42, 351–357.Google Scholar
  34. 34.
    Goodman, I., Fouts, J. R., Brensnick, E., Menegas, R., & Hitchings, G. H. (1959). Science, 130, 450–451.Google Scholar
  35. 35.
    Jones, A. M., Bridges, M., Bones, A. M., Cole, R., & Rossiter, J. T. (2001). Insect Biochemistry and Molecular Biology, 31, 1–5.Google Scholar
  36. 36.
    Kazana, E., Pope, T. W., Tibbles, L., Bridges, M., Pickett, J. A., Bones, A. M., et al. (2007). Proceedings of Biology Science, 274, 2271–2277.Google Scholar
  37. 37.
    Talekar, N. S., & Shelton, A. M. (1993). Annual Review of Entomology, 38, 275–301.Google Scholar
  38. 38.
    Shelton, A.M. (2004). Management of the diamondback moth: De´ ja` vu all over again? In: N. Endersby, P.M. Ridland (Eds.), The management of diamondback moth and other crucifer pests, pp. 3–8. Proceedings of the Fourth International Workshop on Diamond Back Moth, 26–29 November 2001, Melbourne, Australia.Google Scholar
  39. 39.
    Hopkins, R. J., Van Dam, N. M., & Van Loon, J. J. A. (2009). Annual Review Entomology, 54, 57–83.Google Scholar
  40. 40.
    Agerbirk, N., De Vos, M., Kim, J. H., & Jander, G. (2009). Phytochemistry Reviews, 8, 101–120.Google Scholar
  41. 41.
    Giamoustaris, A., & Mithen, R. (1996). Theoretical and Applied Genetics, 93, 1006–1010.Google Scholar
  42. 42.
    Martin, N., & Muller, C. (2006). Basic Applied Ecology, 8, 13–25.Google Scholar
  43. 43.
    Lambrix, V., Reichelt, M., Mitchell-Olds, T., Kliebenstein, D. J., & Gershenzon, J. (2001). The Plant Cell, 13, 2793–2807.Google Scholar
  44. 44.
    Giamoustaris, A., & Mithen, R. (1995). The Annals of Applied Biology, 126, 347–363.Google Scholar
  45. 45.
    Wittstock, U., Kliebenstein, D. J., Lambrix, V., Reichelt, M., & Gershenzon, J. (2003). Glucosinolate hydrolysis and its impact on generalist and specialist insect herbivores. In J. T. Romeo (Ed.), Integrative phytochemistry: from ethnobotany to molecular ecology (pp. 101–125). Amsterdam: Elsevier.Google Scholar
  46. 46.
    Wittstock, U., Agerbirk, N., Stauber, E. J., Olsen, C. E., Hippler, M., Mitchell-Olds, T., et al. (2004). Proc. Natl. Acad. Sci. USA, 101, 4859–4864.Google Scholar
  47. 47.
    Sun, J. Y., Sonderby, I. E., Halkier, B. A., Jander, G., & de Vos, M. (2010). Journal of Chemical Ecology, 35, 1427–1436.Google Scholar
  48. 48.
    Read, D. P., Feeny, P. P., & Root, R. B. (1970). Can Entomol, 102, 1567–1578.Google Scholar
  49. 49.
    Mattiacci, L., Dicke, M., & Posthumus, M. A. (1994). Journal of Chemical Ecology, 20, 2229–2247.Google Scholar
  50. 50.
    Aliabadi, A., Renwick, J. A. A., & Whitman, D. W. (2002). Journal of Chemical Ecology, 28, 1749–1762.Google Scholar
  51. 51.
    Muller, C., Agerbirk, N., Olsen, C. E., Boeve, J. L., Schaffner, U., & Brakefield, P. (2001). Journal of Chemical Ecology, 27, 2505–2516.Google Scholar
  52. 52.
    Bridges, M., Jones, A. M. E., Bones, A. M., Hodgson, C., Cole, R., Bartlet, E., et al. (2001). Proceedings of the Royal Society of London Series B-Biology Science, 269, 187–191.Google Scholar
  53. 53.
    De Vos, M., Kriksunov, K. L., & Jander, G. (2008). Plant Physiology, 146, 916–926.Google Scholar
  54. 54.
    Sun, J. Y., Sonderby, I. E., Halkier, B. A., Jander, G., & De Vos, M. (2009). Journal of Chemical Ecology, 35, 1427–1436.Google Scholar
  55. 55.
    Mumm, R., Burow, M., Bukovinszkine’Kiss, G., Kazantzidou, E., Wittstock, U., Dicke, M., et al. (2008). Journal of Chemical Ecology, 34, 1311–1321.Google Scholar
  56. 56.
    Kim, J. H., & Jander, G. (2007). The Plant Journal, 49, 1008–1019.Google Scholar
  57. 57.
    Kos, M., Houshyani, B., Wietsma, R., Kabouw, P., Vet, L. E. M., van Loon, J. J. A., et al. (2012). Photochemistry, 77, 162–170.Google Scholar
  58. 58.
    Kim, J. H., Lee, B. W., Schroeder, F. C., & Jander, G. (2008). The Plant Journal, 54, 1015–1026.Google Scholar
  59. 59.
    Pope, T. W., Kissen, R., Grant, M., Pickett, J. A., Rossiter, J. T., & Powell, G. (2008). Journal of Chemical Ecology, 34, 1302–1310.Google Scholar
  60. 60.
    Kissen, R., & Bones, A. M. (2009). The Journal of Biological Chemistry, 284, 12057–12070.Google Scholar
  61. 61.
    Oliveira, R. D. L., Dhingra, O. D., Lima, A. O., Jham, G. N., Berhow, M. A., Holloway, R. K., et al. (2011). Plant and Soil, 341, 155–164.Google Scholar
  62. 62.
    Moldrup, M. E., Geu-Flores, F., de Vos, M., Olsen, C. E., Sun, J., Jander, G., et al. (2012). Plant Biotechnology Journal, 10, 435–442.Google Scholar
  63. 63.
    De Vos, M., Jae, H. K., & Jander, G. (2007). BioEssays, 29, 871–883.Google Scholar
  64. 64.
    Haramoto, E. R. (2004). The effects of Brassica cover crops on weed dynamics. M.Sc. Thesis. USA: The University of Maine.Google Scholar
  65. 65.
    Vig, A. P., Rampal, G., Thind, T. S., & Arora, S. (2009). LWT- Food Science and Technology, 42, 1561–1572.Google Scholar
  66. 66.
    Handiseni, M., Brown, J., Zemetra, R., & Mazzola, M. (2011). Weed Technology, 25(1), 127–134.Google Scholar
  67. 67.
    Earlywine, D. T., Smeda, R. J., Teuton, T. C., Sams, C. E., & Xiong, X. (2010). Weed Technology, 24, 4,440–4445.Google Scholar
  68. 68.
    Bangarwa, S. K., Norsworthy, J. K., Mattice, J. D., & Gbur, E. E. (2011). Weed Technology, 25(3), 466–472.Google Scholar
  69. 69.
    Lipka, U., Fuchs, R., & Lipka, V. (2008). Current Opinion in Plant Biology, 11, 404–411.Google Scholar
  70. 70.
    Mari, M., Leoni, O., Iori, R., & Cembali, T. (2002). Plant Pathology, 51, 231–236.Google Scholar
  71. 71.
    Smolinska, U., Morra, M. J., Knudsen, G. R., & James, R. L. (2003). Plant Disease, 87, 407–412.Google Scholar
  72. 72.
    Li, Y., Kiddle, G., Bennett, R. N., & Wallsgrove, R. (1999). The Annals of Applied Biology, 134, 45–58.Google Scholar
  73. 73.
    Aires, A., Dias, C. S. P., Carvalho, R., Oliveira, M. H., Monteiro, A. A., Simoes, M. V., et al. (2011). Scientia Horticulturae, 129, 503–510.Google Scholar
  74. 74.
    Mikkelsen, M. D., Petersen, B. L., & Glawischnig, E. (2003). Plant Physiology, 131, 298–308.Google Scholar
  75. 75.
    Bak, S., Olsen, C. E., Peteresen, B. L., Moller, B. L., & Halkier, B. A. (1999). The Plant Journal, 20, 663–671.Google Scholar
  76. 76.
    Wittstock, U., & Halkier, B. (2000). The Journal of Biological Chemistry, 275(19), 14659–14666.Google Scholar
  77. 77.
    Bednarek, P., Piślewska-Bednarek, M., Svatoš, A., Schneider, B., Doubský, J., Mansurova, M., et al. (2009). Science, 323, 101–106.Google Scholar
  78. 78.
    Lipka, V., Dittgen, J., Bednarek, P., Bhat, R., Wiermer, M., Stein, M., et al. (2005). Science, 310, 1180–1183.Google Scholar
  79. 79.
    Stein, M., Dittgen, J., Sánchez-Rodríguez, C., Hou, B. H., Molina, A., Schulze-Lefert, P., et al. (2006). The Plant Cell, 18, 731–746.Google Scholar
  80. 80.
    Clay, N. K., Adio, A. M., Denoux, M., Jander, G., & Ausubel, F. M. (2009). Science, 323(5910), 95–101.Google Scholar
  81. 81.
    Manici, L. M., Lazzeri, L., & Palmieri, S. (1997). Journal of Agricultural and Food Chemistry, 4, 2768–2773.Google Scholar
  82. 82.
    Tierns, K., Thomma, B. P. H., Brouwer, M., Schmidt, J., Kistner, K., Porzel, A., et al. (2001). Plant Physiology, 125, 1688–16.Google Scholar
  83. 83.
    Rouxel, T., Kollmann, A., Boulidard, L., & Mithen, R. (1991). Planta, 184, 271–278.Google Scholar
  84. 84.
    Fan, J., Crooks, C., Creissen, G., Hill, L., Fairhurst, S., Doerner, P., et al. (2011). Science, 331(6021), 1185–1188.Google Scholar
  85. 85.
    Glazebrook, J., Chen, W., Estes, B., Chang, H.-S., Nawrath, C., Metraux, J.-P., et al. (2003). The Plant Journal, 31, 217–228.Google Scholar
  86. 86.
    Reymond, P., & Farmer, E. E. (1998). Current Opinion in Plant Biology, 1, 404–411.Google Scholar
  87. 87.
    Turner, J. G., Ellis, C., & Devoto, A. (2002). The Plant Cell, 14, 153–164.Google Scholar
  88. 88.
    Brader, G., Mikkelsen, M., Halkier, B., & Tapio Palva, E. (2006). The Plant Journal, 46(5), 758–767.Google Scholar
  89. 89.
    Sasaki-Sekimoto, Y., Taki, N., Obayashi, T., Aono, M., Matsumoto, F., Sakurai, N., et al. (2005). The Plant Journal, 44, 653–668.Google Scholar
  90. 90.
    Erb, M., Ton, J., Degenhardt, J., & Turlings, T. C. J. (2008). Plant Physiology, 146, 867–874.Google Scholar
  91. 91.
    van Dam, N. M., Horn, M., Mareˇs, M., & Baldwin, I. T. (2001). Journal of Chemical Ecology, 27, 547–568.Google Scholar
  92. 92.
    van Dam, N. M., Witjes, L., & Svatoš, A. (2004). The New Phytologist, 161, 801–810.Google Scholar
  93. 93.
    van Dam, N. M., & Oomen, M. W. A. T. (2008). Plant Signaling & Behavior, 3, 91–98.Google Scholar
  94. 94.
    Rostas, M., Simon, M., & Hilker, M. (2003). Basic Applied Ecology, 4, 43–62.Google Scholar
  95. 95.
    Diezel, C., von Dahl, C. C., Gaquerel, E., & Baldwin, I. T. (2009). Plant Physiology, 150, 1576–1586.Google Scholar
  96. 96.
    Li, Y. H., Lee, K. K., Walsh, S., Smith, C., Hadingham, S., Sorefan, K., et al. (2006). Genome Research, 16, 414–427.Google Scholar
  97. 97.
    Mewis, I., Appel, H. M., Hom, A., Raina, R., & Schultz, J. C. (2005). Plant Physiology, 138, 1149–1162.Google Scholar
  98. 98.
    Mewis, I., Tokuhisa, J. G., Schultz, J. C., Appel, H. M., Ulrichs, C., & Gershenzon, J. (2006). Phytochemistry, 67, 2450–2462.Google Scholar
  99. 99.
    Skirycz, A., Reichelt, M., Burow, M., Birkemeyer, C., Rolcik, J., Kopka, J., et al. (2006). The Plant Journal, 47, 10–24.Google Scholar
  100. 100.
    Dombrecht, B., Xue, G. P., Sprague, S. J., Kirkegaard, J. A., Ross, J. J., Reid, J. B., et al. (2007). The Plant Cell, 19(7), 2225–2245.Google Scholar
  101. 101.
    Gigolashvili, T., Berger, B., Mock, H. P., Muller, C., Weisshaar, B., & Flugge, U. I. (2007). The Plant Journal, 50, 886–901.Google Scholar
  102. 102.
    Armengaud, P., Breitling, R., & Amtmann, A. (2004). Plant Physiology, 136, 2556–2576.Google Scholar
  103. 103.
    Maruyama-Nakashita, A., Nakamura, Y., Tohge, T., Saito, K., & Takahashi, H. (2006). The Plant Cell, 18, 3235–3251.Google Scholar
  104. 104.
    Celenza, J. L., Quiel, J. A., Smolen, G. A., Merrikh, H., Silvestro, A. R., Normanly, J., et al. (2005). Plant Physiology, 137, 253–262.Google Scholar
  105. 105.
    Kawashima, C. G., Yoshimoto, N., Maruyama-Nakashita, A., Tsuchiya, Y. N., Saito, K., Takahashi, H., et al. (2009). The Plant Journal, 57, 313–321.Google Scholar
  106. 106.
    Bodnaryk, R. P. (1994). Phytochemistry, 35, 301–305.Google Scholar
  107. 107.
    Oughty, K. J., Kiddle, G. A., Pye, B. J., Wallsgrove, R. M., & Pickett, J. A. (1995). Phytochemistry, 38, 347–350.Google Scholar
  108. 108.
    Kiddle, G. A., Doughty, K. J., & Wallsgrove, R. M. (1994). Journal of Experimental Botany, 45, 1343–1346.Google Scholar
  109. 109.
    Zhao, Z., Zhang, W., Stanley, B. A., & Assmann, S. M. (2008). The Plant Cell, 20, 3210–3226.Google Scholar
  110. 110.
    Khokon, M. A., Jahan, M. S., Rahman, T., Hossain, M. A., Muroyama, D., Minami, I., et al. (2011). Plant, Cell & Environment, 34(11), 1900–1906. doi:10.1111/j.1365-3040.2011.02385.x.Google Scholar
  111. 111.
    Traka, M., & Mithen, R. (2009). Phytochemistry Reviews, 8, 269–282.Google Scholar
  112. 112.
    Zhang, Y. (2012). Carcinogenesis, 33(1), 2–9.Google Scholar
  113. 113.
    Tseng, E. (2002). Pharmaceutical Research, 19, 1509–1515.Google Scholar
  114. 114.
    Ji, Y. (2005). Molecular Pharmaceutics, 2, 414–419.Google Scholar
  115. 115.
    Musk, S. R., Smith, T. K., & Johnson, I. T. (1995). Mutation Research, 348, 19–23.Google Scholar
  116. 116.
    Zhang, Y., Kensler, T. W., & Cho, C. G. (1994). Proceedings of the National Academy of Sciences of the United States of America, 91, 3147–3150.Google Scholar
  117. 117.
    Sugie, S., Okamoto, K., & Okumura, A. (1994). Carcinogenesis, 15, 1555–1560.Google Scholar
  118. 118.
    Gerhauser, C., You, M., & Liu, J. (1997). Cancer Research, 57, 272–278.Google Scholar
  119. 119.
    Chung, F. L., Conaway, C. C., & Rao, C. V. (2000). Carcinogenesis, 21, 2287–2291.Google Scholar
  120. 120.
    Fahey, J. W., Haristoy, X., & Dolan, P. M. (2002). Proceedings of the National Academy of Sciences of the United States of America, 99, 7610–7615.Google Scholar
  121. 121.
    Conaway, C. C., Wang, C. X., & Pittman, B. (2005). Cancer Research, 65, 8548–8557.Google Scholar
  122. 122.
    Hu, R., Khor, T. O., & Shen, G. (2006). Carcinogenesis, 27, 2038–2046.Google Scholar
  123. 123.
    Khor, T. O., Keum, Y. S., & Lin, W. (2006). Cancer Research, 66, 613–621.Google Scholar
  124. 124.
    Shen, G., Khor, T. O., Hu, R., Yu, S., Nair, S., Ho, C. T., et al. (2007). Cancer Research, 67, 9937–9944.Google Scholar
  125. 125.
    Verhoeven, D. T., Verhagen, H., Goldbohm, R. A., et al. (1997). Chemico-Biological Interactions, 103, 79–129.Google Scholar
  126. 126.
    Juge, N., Mithen, R. F., & Traka, M. (2007). Cellular and Molecular Life Sciences, 64, 1105–1127.Google Scholar
  127. 127.
    Yang, Y. M., Conaway, C. C., Chiao, J. W., et al. (2002). Cancer Research, 62, 2–7.Google Scholar
  128. 128.
    Khor, T. O., Cheung, W. K., Prawan, A., et al. (2008). Molecular Carcinogenesis, 47(5), 321–325.Google Scholar
  129. 129.
    Thapliyal, R., & Maru, G. B. (2001). Food and Chemical Toxicology, 39, 541–547.Google Scholar
  130. 130.
    Barcelo, S., Gardiner, J. M., Gescher, A., et al. (1996). Carcinogenesis, 17, 277–282.Google Scholar
  131. 131.
    Maheo, K., Morel, F., Langouet, S., et al. (1997). Cancer Research, 57, 3649–3652.Google Scholar
  132. 132.
    Moon, Y.J., Brazeau, D.A., & Morris, M.E. (2011). Evidence-based complementary and alternative medicine. Volume 2011, Article ID 462525, 8 pages. New York: Hindawi. doi:10.1155/2011/462525.Google Scholar
  133. 133.
    Gao, N., Cheng, S., Budhraja, A., Liu, E. H., Chen, J., Chen, D., et al. (2012). PLoS One, 7(2), e31783.Google Scholar
  134. 134.
    Patten, E. J., & DeLong, M. J. (1999). Biochemical and Biophysical Research Communications, 257, 149–155.Google Scholar
  135. 135.
    Xiao, D., Srivastava, S. K., Lew, K. L., et al. (2003). Carcinogenesis, 24, 891–897.Google Scholar
  136. 136.
    Van Poppel, G., Verhoeven, D. T. H., Verhagen, H., & Goldbohm, R. (1999). Advances in Experimental Medicine and Biology, 472, 159.Google Scholar
  137. 137.
    Ju, Y. H., Carlson, K. E., Sun, J., Pathak, D., Katzenellenbogen, B. S., Katzenellenbogen, J. A., et al. (2000). Journal Agricultural and Food Chemistry, 48, 4628–4634.Google Scholar
  138. 138.
    Riby, J. E., Chang, G. H., Firestone, G. L., & Bjeldanes, L. F. (2000). Biochemical Pharmacology, 60, 167–177.Google Scholar
  139. 139.
    Fares, F., Azzam, N., Appel, B., Fares, B., & Stein, A. (2010). European Journal of Cancer Prevention, 19, 199–203.Google Scholar
  140. 140.
    Asakage, M., Tsuno, N. H., Kitayama, J., et al. (2006). Angiogenesis, 9, 83–91.Google Scholar
  141. 141.
    Brown, K. K., Blaikie, F. H., Smith, R. A., Tyndall, J. D., Lue, H., Bernhagen, J., et al. (2009). The Journal of Biological Chemistry, 284, 32425–32433.Google Scholar
  142. 142.
    Haristoy, X., Angioi-Duprez, K., Duprez, A., et al. (2003). Antimicrobial Agents and Chemotherapy, 47, 3982–3984.Google Scholar
  143. 143.
    Cornelis, M. C., El-Sohemy, A., & Campos, H. (2007). The American Journal of Clinical Nutrition, 86, 752–758.Google Scholar
  144. 144.
    Shishu, Singla, A. K., & Kaur, I. P. (2003). Planta Medica, 69, 184–186.Google Scholar
  145. 145.
    Murugan, S. S., Balakrishnamurthy, P., & Mathew, Y. J. (2007). Phytotherapy Research, 21, 545–547.Google Scholar
  146. 146.
    Mandelova, L., & Totusek, J. (2007). High Pressure Research, 27, 151–156.Google Scholar
  147. 147.
    Mikkelsen, M. D., Petersen, B. L., Olsen, C. E., & Halkier, B. A. (2002). Amino Acids, 22, 279–295.Google Scholar
  148. 148.
    Underhill, E. W. (1980). In E. A. Bell & B. V. Charlwood (Eds.), Secondary plant products Vol 8 (p. 493). New York: Springer.Google Scholar
  149. 149.
    Poulton, J. E., & Møller, B. L. (1993). Glucosinolates. In P. J. Lea (Ed.), Methods in plant biochemistry (Vol 9) (pp. 209–237). New York: Academic.Google Scholar
  150. 150.
    Gigolashvili, T., Yatusevich, R., Rollwitz, I., Humphry, M., Gershenzon, J., & Flügge, U. (2009). The Plant Cell, 21, 1813–1829.Google Scholar
  151. 151.
    Kroymann, J., Textor, S., Tokuhisa, J. G., Falk, K. L., Bartram, S., Gershenzon, J., et al. (2001). Plant Physiology, 127, 1077–1088.Google Scholar
  152. 152.
    Pfalz, M., Vogel, H., & Kroymann, J. (2009). The Plant Cell, 21, 985–999.Google Scholar
  153. 153.
    Kliebenstein, D. J., Lambrix, V. M., Reichelt, M., Gershenzon, J., & Mitchell-Olds, T. (2001). The Plant Cell, 13, 681–693.Google Scholar
  154. 154.
    Hansen, B. G., Kerwin, R. E., Ober, J. A., Lambrix, V. M., Mitchell-Olds, T., Gershenzon, J., et al. (2008). Plant Physiology, 148, 2096–2108.Google Scholar
  155. 155.
    Benderoth, M., Textor, S., Windsor, A. J., Mitchell-Olds, T., Gershenzon, J., & Kroymann, J. (2006). Proceedings of the National Academy of Sciences of the United States of America, 103, 9118–9123.Google Scholar
  156. 156.
    Grubb, C. D., & Abel, S. (2006). Trends in Plant Science, 11, 89–100.Google Scholar
  157. 157.
    Hull, A. K., Vij, R., & Celenza, J. L. (2000). Proceedings of the National Academy of Sciences of the United States of America, 97, 2379–2384.Google Scholar
  158. 158.
    Mikkelsen, M. D., Hansen, C. H., Wittstock, U., & Halkier, B. A. (2000). The Journal of Biological Chemistry, 275, 33712–33717.Google Scholar
  159. 159.
    Hansen, C. H., Wittstock, U., Olsen, C. E., Hick, A. J., Pickett, J. A., & Halkier, B. A. (2001). The Journal of Biological Chemistry, 276, 11078–11085.Google Scholar
  160. 160.
    Chen, S., Glawischnig, E., Jørgensen, K., Naur, P., Jørgensen, B., Olsen, C. E., et al. (2003). The Plant Journal, 33, 923–937.Google Scholar
  161. 161.
    Bak, S., & Feyereisen, R. (2001). Plant Physiology, 127, 108–118.Google Scholar
  162. 162.
    Hansen, C. H., Du, L., Naur, P., Olsen, C. E., Axelsen, K. B., Hick, A. J., et al. (2001). The Journal of Biological Chemistry, 276, 24790–24796.Google Scholar
  163. 163.
    Hemm, M. R., Ruegger, M. O., & Chapple, C. (2003). The Plant Cell, 15, 179–194.Google Scholar
  164. 164.
    Naur, P., Petersen, B. L., Mikkelsen, M. D., Bak, S., Rasmussen, H., Olsen, C. E., et al. (2003). Plant Physiology, 133, 63–72.Google Scholar
  165. 165.
    Mikkelsen, M. D., Naur, P., & Halkier, B. A. (2004). The Plant Journal, 37, 770–777.Google Scholar
  166. 166.
    Schlaeppi, K., Bodenhausen, N., Buchala, A., Mauch, F., & Reymond, P. (2008). The Plant Journal, 55, 774–786.Google Scholar
  167. 167.
    Grubb, C. D., Zipp, B. J., Ludwig-Müller, J., Masuno, M. N., Molinski, T. F., & Abel, S. (2004). The Plant Journal, 40, 893–908.Google Scholar
  168. 168.
    Gachon, C. M., Langlois-Meurinne, M., Henry, Y., & Saindrenan, P. (2005). Plant Molecular Biology, 58, 229–245.Google Scholar
  169. 169.
    Piotrowski, M., Schemenewitz, A., Lopukhina, A., Müller, A., Janowitz, T., Weiler, E. W., et al. (2004). The Journal of Biological Chemistry, 279, 50717–50725.Google Scholar
  170. 170.
    Kopriva, S. (2006). Annals Botany (London), 97, 479–495.Google Scholar
  171. 171.
    Magrath, R., Bano, F., Morgner, M., Parkin, I., Sharpe, A., Lister, C., et al. (1994). Heredity, 72, 290–299.Google Scholar
  172. 172.
    Kroymann, J., Donnerhacke, S., Schnabelrauch, D., & Mitchell-Olds, T. (2003). Proceedings of the National Academy of Sciences of the United States of America, 100, 14587–14592.Google Scholar
  173. 173.
    Li, J., Hansen, B. G., Kliebenstein, D. J., & Halkier, B. A. (2008). Plant Physiology, 148, 1721–1733.Google Scholar
  174. 174.
    Hansen, B. G., Kliebenstein, D. J., & Halkier, B. A. (2007). The Plant Journal, 50, 902–910.Google Scholar
  175. 175.
    Graser, G., Schneider, B., Oldhamn, J., & Gershenzon, J. (2000). Archives of Biochemistry and Biophysics, 378, 411–419.Google Scholar
  176. 176.
    Pfalz, M., Mikkelsen, M. D., Bednarek, P., Olsen, C. E., Halkier, B. A., & Kroymann, J. (2011). The Plant Cell, 23, 716–729.Google Scholar
  177. 177.
    Kai, K., Takahashi, H., Ogawa, T., Kanaya, S., & Ohta, D. (2011). Plant Biotechnology, 28, 379–385.Google Scholar
  178. 178.
    Duncan, A. J., & Milne, J. A. (1989). Aspects of Applied Biology, 19, 75–92.Google Scholar
  179. 179.
    Fahey, J. W., Zhang, Y., & Talalay, P. (1997). Proceedings of the National Academy of Sciences of the United States of America, 94, 10367–10372.Google Scholar
  180. 180.
    Wittstock, U., & Burow, M. (2010). The Arabidopsis book. Rockville: The American Society of Plant Biologists, 8, e0134. 2010.Google Scholar
  181. 181.
    Xu, Z., Escamilla-Treviño, L.L., Zeng, L., Lalgondar, M., Bevan, D.R., Winkel, B.S.J., et al. (2004). Plant Molecular Biology, 55, 343–367.Google Scholar
  182. 182.
    Zhang, J., Andersson, D., & Meijer, J. (2002a). 13th International Conference on Arabidopsis Research (28 June–2 July, 2002, Seville, Spain), Abstract 6–25.Google Scholar
  183. 183.
    Thangstad, O. P., Iversen, T.-H., Slupphaug, G., & Bones, A. M. (1990). Planta, 180, 245–248.Google Scholar
  184. 184.
    Ueda, H., Nishiyama, C., Shimada, T., Koumoto, Y., Hayashi, Y., Kondo, M., et al. (2006). Plant & Cell Physiology, 47, 164–175.Google Scholar
  185. 185.
    Grob, K., & Matile, P. (1979). Plant Science, 14, 327–335.Google Scholar
  186. 186.
    Matile, et al. (1980). Biochemie Und Physiologyogie Der Pflanzen, 175, 722–731.Google Scholar
  187. 187.
    Agee, A. E., Surpin, M., Sohn, E. J., Girke, T., Rosado, A., Kram, B. W., et al. (2010). Plant Physiology, 152, 120–132.Google Scholar
  188. 188.
    Falk, A., Taipalensuu, J., Ek, B., Lenman, M., & Rask, L. (1995). Planta, 195, 387–395.Google Scholar
  189. 189.
    Thangstad, O. P., Winge, P., Husebye, H., & Bones, A. M. (1993). Plant Molecular Biology, 23, 511–524.Google Scholar
  190. 190.
    Lenman, M., Rödin, J., Josefsson, L. G., & Rask, L. (1990). European Journal of Biochemistry, 194, 747–753.Google Scholar
  191. 191.
    Geshi, N., & Brandt, A. (1998). Planta, 204, 295–304. 1998.Google Scholar
  192. 192.
    Taipalensuu, J., Falk, A., Ek, B., & Rask, L. (1997). European Journal of Biochemistry, 243, 605–611.Google Scholar
  193. 193.
    Taipalensuu, J., Eriksson, S., & Rask, L. (1997). European Journal of Biochemistry, 250, 680–688.Google Scholar
  194. 194.
    Taipalensuu, J., Andreasson, E., Eriksson, S., & Rask, L. (1997). European Journal of Biochemistry, 247, 963–971.Google Scholar
  195. 195.
    Eriksson, S., Andreasson, E., Ekbom, B., Graner, G., Pontoppidan, B., Taipalensuu, J., et al. (2002). Plant Physiology, 129, 1592–1599.Google Scholar
  196. 196.
    Zhang, Z., Ober, J. A., & Kliebenstein, D. J. (2006). The Plant Cell, 18, 1524–1536.Google Scholar
  197. 197.
    Vorwerk, S., Biernacki, S., Hillebrand, H., Janzik, I., Müller, A., Weiler, E. W., et al. (2001). Planta, 212, 508–516.Google Scholar
  198. 198.
    Kutz, A., Müller, A., Hennig, P., Kaiser, W. M., Piotrowski, M., & Weiler, E. W. (2002). The Plant Journal, 30, 95–106.Google Scholar
  199. 199.
    Grsic-Rausch, S., Kobelt, P., Siemens, J. M., Bischoff, M., & Müller. (2000). Plant Physiology, 122, 369–378.Google Scholar
  200. 200.
    Wittstock, U., & Burow, M. (2007). IUBMB Life, 59, 744–751.Google Scholar
  201. 201.
    Burow, M., Losansky, A., Muller, R., Plock, A., Kliebenstein, D. J., & Wittstock, U. (2009). Plant Physiology, 149, 561–574.Google Scholar
  202. 202.
    Braun, E. L., Dias, A. P., Matulnik, T. J., & Grotewold, E. (2001). Recent Advances in Phytochemistry, 35, 79–109.Google Scholar
  203. 203.
    Capell, T., & Christou, P. (2004). Current Opinion in Biotechnology, 15, 148–154.Google Scholar
  204. 204.
    Bak, S., Olsen, C. E., Halkier, B. A., & Møller, B. L. (2000). Plant Physiology, 123, 1437–1448.Google Scholar
  205. 205.
    Mikkelsen, M. D., & Halkier, B. A. (2003). Plant Physiology, 131, 773–779.Google Scholar
  206. 206.
    Zang, Y. X., Kim, J. H., Park, Y. D., Kim, D. H., & Hong, S. B. (2008). BMB Reports, 41, 472–478.Google Scholar
  207. 207.
    Zang, Y. X., Kim, D. H., Park, B. S., & Hong, S. B. (2009). Biotechnology and Bioprocess Engineering, 14, 467–473.Google Scholar
  208. 208.
    Bender, J., & Fink, G. R. (1998). Proceedings of the National Academy of Sciences of the United States of America, 95, 5655–5660.Google Scholar
  209. 209.
    Hirai, M. Y., Sugiyama, K., Sawada, Y., Tohge, T., Obayashi, T., Suzuki, A., et al. (2007). Proceedings of the National Academy of Sciences of the United States of America, 104, 6478–6483.Google Scholar
  210. 210.
    Gigolashvili, T., Yatusevich, R., Berger, B., Müller, C., & Flügge, U. I. (2007). The Plant Journal, 51, 247–261.Google Scholar
  211. 211.
    Gigolashvili, T., Engqvist, M., Yatusevich, R., Müller, C., & Flügge, U. I. (2008). The New Phytologist, 177, 627–642.Google Scholar
  212. 212.
    Sonderby, I. E., Hansen, B. G., Bjarnholt, N., Ticconi, C., Halkier, B. A., & Kliebenstein, D. (2007). PLoS One, 2(12), e1322.Google Scholar
  213. 213.
    Wang, H., Wu, J., Sun, S., Liu, B., Cheng, F., Sun, R., et al. (2011). Gene, 487(2), 135–142.Google Scholar
  214. 214.
    Mikkelsen, M. D., Olsen, C. E., & Halkier, B. A. (2010). Molecular Plant, 3, 751–759.Google Scholar
  215. 215.
    Geu-Flores, F., Olsen, C. E., & Halkier, B. A. (2009). Planta, 229, 261–270.Google Scholar
  216. 216.
    Geu-Flores, F., Nielsen, M. T., Nafisi, M., Møldrup, M. E., Olsen, C. E., Motawia, M. S., et al. (2009). Nature Chemical Biology, 5, 575–577.Google Scholar
  217. 217.
    Geu-Flores, F., Møldrup, M. E., Böttcher, C., Olsen, C. E., Scheel, D., & Halkier, B. A. (2011). The Plant Cell, 23, 2456–2469.Google Scholar
  218. 218.
    Mikkelsen, M. D., Buron, L. D., Salomonsen, B., Olsen, C. E., Hansen, B. G., Mortenson, U. H., et al. (2012). Metabolic Engineering, 1, 104–111.Google Scholar
  219. 219.
    Tzin, V., Malitsky, S., Aharoni, A., & Galili, G. (2009). The Plant Journal, 60, 156–167.Google Scholar
  220. 220.
    Barillari, J., Gueyrard, D., Rollin, P., & Iori, R. (2001). Fitoterapia, 72, 760–764.Google Scholar
  221. 221.
    Huang, T., Tohge, T., Lytovchenko, A., Fernie, A., & Jander, G. (2010). The Plant Journal, 63, 823–835.Google Scholar
  222. 222.
    Gururani, M. A., & Park, S. W. (2012). Journal of General Plant Pathology. doi:10.1007/s10327-012-0402-x.
  223. 223.
    Collinge, D. B., Jørgensen, H. J. L., Lund, O. S., & Lyngkjær, M. F. (2010). Annual Review of Phytopathology, 48, 269–291.Google Scholar
  224. 224.
    Borgen, B. H., Thangstad, O. P., Ahuja, I., Rossiter, J. T., & Bones, A. M. (2010). Journal of Experimental Botany, 61, 1683–1697.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Venkidasamy Baskar
    • 1
  • Mayank Anand Gururani
    • 1
  • Jae Woong Yu
    • 1
  • Se Won Park
    • 1
  1. 1.Department of Molecular Biotechnology, School of Life & Environmental SciencesKonkuk UniversitySeoulSouth Korea

Personalised recommendations