Applied Biochemistry and Biotechnology

, Volume 168, Issue 6, pp 1672–1680 | Cite as

Screened Butanol-Tolerant Enterococcus faecium Capable of Butanol Production

  • Cindy Ng Wei Ting
  • Jinchuan Wu
  • Katsuyuki Takahashi
  • Ayako Endo
  • Hua Zhao


Due to the complex mechanisms involved in butanol-induced stress response, butanol tolerance phenotype is difficult to engineer even in microorganisms with well-defined genetic backgrounds. We therefore aimed to isolate butanol-tolerant microorganisms from environmental samples as potential alternative hosts for butanol production. Soil samples collected were subjected to butanol stress. A microbial strain capable of 2.5–3 % (w/v) butanol tolerance was isolated and identified as Enterococcus faecium by 16S rDNA analysis. The isolate grew readily under both aerobic and anaerobic conditions and was capable of producing butanol anaerobically. In comparison with the obligate anaerobe Clostridium acetobutylicum, the growth under both aerobic and anaerobic conditions of the isolated strain, together with no detection of butyrate and lack of two-phase fermentation suggests different metabolic networks from the obligate anaerobe C. acetobutylicum. Under anaerobic condition, butanol reached up to 0.4 g l−1 in a batch culture without heterologous introduction of butanol biosynthetic pathway. Besides butanol tolerance, the isolated E. faecium IB1 showed high tolerance to 10 % (w/v) ethanol and 3 % (w/v) isobutanol. With distinct features including high butanol tolerance and natural butanol production, the isolated E. faecium IB1 with minimum metabolic engineering can be explored as a potential host for butanol production.


Butanol tolerance Butanol production Enterococcus faecium 



We thank Dr. Christoph Ottenheim for his critical reading of the manuscript. This work was funded by Agency for Science, Technology and Research (A*STAR) in Singapore ICES/12-174A01.

Supplementary material

12010_2012_9888_MOESM1_ESM.docx (90 kb)
ESM 1 (DOCX 90 kb)


  1. 1.
    Atsumi, S., Cann, A. F., Connor, M. R., Shen, C. R., Smith, K. M., Brynildsen, M. P., et al. (2008). Metabolic Engineering, 10, 305–311.CrossRefGoogle Scholar
  2. 2.
    Steen, E. J., Chan, R., Prasad, N., Myers, S., Petzold, C. J., Redding, A., et al. (2008). Microbial Cell Factories, 7, 36.CrossRefGoogle Scholar
  3. 3.
    Ezeji, T. C., Qureshi, N., & Blaschek, H. P. (2003). World Journal of Microbiology and Biotechnology, 19, 595–603.CrossRefGoogle Scholar
  4. 4.
    Papoutsakis, E. T. (2008). Current Opinion in Biotechnology, 19, 420–429.CrossRefGoogle Scholar
  5. 5.
    Shin, J. H., Yoon, J. H., Lee, S. H., & Park, T. H. (2010). Bioresource Technology, 101, S53–S58.CrossRefGoogle Scholar
  6. 6.
    Janssen, H., Grimmler, G., Ehrenreich, A., Bahl, H., Fischer, R. (2012). Journal of Biotechnology. 10.1016/j.jbiotec.2012.03.027
  7. 7.
    Rutherford, B. J., Robert, H., Dahl, R. H., Price, R. E., Szmidt, H. L., Benke, P. I., et al. (2010). Applied and Environmental Microbiology, 76(6), 1935–1945.CrossRefGoogle Scholar
  8. 8.
    Dunlop, M. J., Dossani, Z. Y., Szmidt, H. L., Chu, H. C., Lee, T. S., Keasling, J. D., et al. (2011). Molecular Systems Biology, 7, 487.CrossRefGoogle Scholar
  9. 9.
    Atsumi, S., Wu, T.-Y., Eckl, E.-M., Hawkins, S. D., Buelter, T., & Liao, J. C. (2010). Applied Microbiology and Biotechnology, 85, 651–657.CrossRefGoogle Scholar
  10. 10.
    Rühl, J., Schmid, A., & Blank, L. M. (2009). Applied and Environmental Microbiology, 75, 4653–4656.CrossRefGoogle Scholar
  11. 11.
    Knoshaug, E. P., & Zhang, M. (2009). Applied Biochemistry and Biotechnology, 153, 13–20.CrossRefGoogle Scholar
  12. 12.
    Li, J., Zhao, J. B., Zhao, M., Yang, Y. L., Jiang, W. H., & Yang, S. (2010). Letters in Applied Microbiology, 50, 373–379.CrossRefGoogle Scholar
  13. 13.
    Bhavani, M., et al. (2012). International Journal of Biological Engineering, 2, 18–22.Google Scholar
  14. 14.
    Bowles, L. K., & Ellefson, W. L. (1985). Applied and Environmental Microbiology, 50, 1165–1170.Google Scholar
  15. 15.
    Jain, M. K., Gleeson, J., Upreti, A., & Upreti, G. C. (1978). Biochimica et Biophysica Acta (BBA)—Biomembranes, 509, 1–8.CrossRefGoogle Scholar
  16. 16.
    Ingram, L. O. (1976). Journal of Bacteriology, 125, 670–678.Google Scholar
  17. 17.
    Torres, S., et al. (2011). Biotechnology Advances, 20, 442–452.CrossRefGoogle Scholar
  18. 18.
    Liu, S., & Qureshi, N. (2009). New Biotechnology, 26, 117–121.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Cindy Ng Wei Ting
    • 1
  • Jinchuan Wu
    • 1
  • Katsuyuki Takahashi
    • 2
  • Ayako Endo
    • 2
  • Hua Zhao
    • 1
  1. 1.Industrial Biotechnology ProgramInstitute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR)Jurong IslandSingapore
  2. 2.Mitsui Chemicals Singapore R&D CentreSingapore Science Park IISingapore

Personalised recommendations