Applied Biochemistry and Biotechnology

, Volume 168, Issue 6, pp 1621–1634 | Cite as

Flocculating Property of Extracellular Polymeric Substances Produced by a Biofilm-Forming Bacterium Acinetobacter junii BB1A

  • Krishna K. Yadav
  • Amit K. Mandal
  • Ipsita K. Sen
  • Soumyananda Chakraborti
  • Syed S. Islam
  • Ranadhir ChakrabortyEmail author


Extracellular polymeric substances (EPS) produced by a biofilm-producing bacterium Acinetobacter junii BB1A were characterized. Purified EPS on analysis revealed neutral sugar (73.21 %), uronic acid (10.12 %), amino sugars (0.23 %), α- amino acids (11.13 %), and aromatic amino acids (1.23 %). Infrared spectrometry revealed the presence of hydroxyl, carboxyl, and amide groups. The average molecular weight of the polysaccharide (PS) fraction of EPS was ~2 × 105. Gas liquid chromatography analysis of PS revealed the presence of three main sugar residues, namely, mannose, galactose, and arabinose (molar ratio of 3:1:1). Cation-independent flocculation above 90 % was observed in the pH range of 4–5 with EPS dosage of 30 mg l−1 at 20 °C. The emulsifying activity of EPS was 66.6 % with toluene, 60 % with n-hexadecane, 53.3 % with olive oil, and least activity of 13.3 % with kerosene. Proteinase K- and trichloroacetic acid-treated EPS showed reduction in flocculation and emulsification, suggesting the significant role of protein component. Energy dispersive X-ray spectroscopy was used to provide direct evidence of biosorption of Co(II), Cd(II), and Hg(II) by EPS.


Acinetobacter junii BB1A Flocculating rate Biofilm Purification Adsorption Bioremediation 



This research was supported by grants from Department of Biotechnology (DBT) (BT/PR-164/BCE/08/448/2006) and University Grants Commission [F. No. 41-558/2012 (SR)], New Delhi, India. Two of the authors, AKM and IKS, were provided with independent Ph.D. fellowships (NBU-JRF/3726/R-2007 and CSIR-09/599(042)/2011-EMR-I, respectively). One of the authors, KKY, is a self-supporting Ph.D. student.


  1. 1.
    Zheng, Y., Ye, Z. L., Fang, X. L., Li, Y. H., & Cai, W. M. (2008). Production and characteristic of a bioflocculant produced by Bacillus sp F19. Bioresource Technology, 99, 7686–7691.CrossRefGoogle Scholar
  2. 2.
    Arezoo, C. (2002). The potential role of aluminium in Alzheimer’s disease. Nephrology, Dialysis, Transplantation, 17, 17–20.Google Scholar
  3. 3.
    Matthys, C., Bilau, M., Govaert, Y., Moons, E., De, H. S., & Willems, J. L. (2005). Risk assessment of dietary acrylamide intake in Flemish adolescents. Food and Chemical Toxicology, 43, 271–278.CrossRefGoogle Scholar
  4. 4.
    Czaczyk, K., & Myszka, K. (2007). Biosynthesis of extracellular polymeric substances (EPS) and its role in microbial biofilm formation. Polish Journal of Environmental Studies, 16, 799–806.Google Scholar
  5. 5.
    Liu, W., Wang, K., Li, B., Yuan, H., & Yang, J. (2010). Production and characterization of an intracellular bioflocculant by Chryseobacterium daeguense W6 cultured in low nutrition medium. Bioresource Technology, 101, 1044–1048.CrossRefGoogle Scholar
  6. 6.
    Kaplan, D., Christiaen, D., & Arad, S. M. (1987). Chelating properties of extracellular polysaccharides from Chlorella spp. Applied and Environmental Microbiology, 53, 2953–2956.Google Scholar
  7. 7.
    Bach, H., Berdichevsky, Y., & Gutnick, D. (2003). An exocellular protein from the oil-degrading microbe Acinetobacter venetianus RAG-1 enhances the emulsifying activity of the polymeric bioemulsifier emulsan. Applied and Environmental Microbiology, 69, 2608–2615.CrossRefGoogle Scholar
  8. 8.
    Kaplan, N., Zosim, Z., & Rosenberg, E. (1987). Reconstitution of emulsifying activity of Acinetobacter calcoaceticus BD4 emulsan by using pure polysaccharide and protein. Applied and Environmental Microbiology, 53, 440–446.Google Scholar
  9. 9.
    Sarkar, S., & Chakraborty, R. (2008). Quorum sensing in metal tolerance of Acinetobacter junii BB1A is associated with biofilm production. FEMS Microbiology Letters, 282, 160–165.CrossRefGoogle Scholar
  10. 10.
    Bhadra, B., Nanda, A. K., & Chakraborty, R. (2006). Inducible nickel resistance in a river isolate of India phylogenetically ascertained as a novel strain of Acinetobacter junii. World Journal of Microbiology and Biotechnology, 22, 225–232.CrossRefGoogle Scholar
  11. 11.
    Plummer, D. T. (1978). An introduction to practical biochemistry (2nd ed.). London: McGraw-Hill.Google Scholar
  12. 12.
    Chaplin, M. F., & Kennedy, J. F. (1986). Carbohydrate analysis: a practical approach. Washington, DC: IRL.Google Scholar
  13. 13.
    Zhang, J., Liu, Z., Wang, S., & Jiang, P. (2002). Characterization of a bioflocculant produced by the marine myxobacterium Nannocystis sp. NU-2. Applied Microbiology and Biotechnology, 59, 517–522.CrossRefGoogle Scholar
  14. 14.
    York, W. S., Darvill, A. K., Mcneil, M., Stevenson, T. T., & Albersheim, P. (1985). Isolation and characterization of plant cell walls and cell wall components. Methods in Enzymology, 118, 33–40.Google Scholar
  15. 15.
    Bhunia, S. K., Dey, B., Maity, K. K., Patra, S., Mandal, S., Maiti, S., Maiti, T. K., Sikdar, S. R., & Islam, S. S. (2010). Structural characterization of an immunoenhancing hetroglycan isolated from an aqueous extract of an edible mushroom, Lentinus squarrosulus (Mont.) Singer. Carbohydrate Research, 345, 2542–2549.CrossRefGoogle Scholar
  16. 16.
    Mondal, S., Chandra, K., Maiti, D., Ojha, A. K., Das, D., Roy, S. K., Ghosh, K., Chakarborty, I., & Islam, S. S. (2008). Chemical analysis of a new fucoglucan isolated from an edible mushroom Termitomyces robustus. Carbohydrate Research, 343, 1062–1070.CrossRefGoogle Scholar
  17. 17.
    Wang, Y., Zhang, M., Ruan, D., Shashkov, A. S., Kilcoyne, M., & Savage, A. V. (2004). Chemical components and molecular mass of six polysaccharides isolated from the sclerotium of Poria cocos. Carbohydrate Research, 339, 327–334.CrossRefGoogle Scholar
  18. 18.
    Kurane, R., Takeda, K., & Suzuki, T. (1986). Screening for and characteristics of microbial flocculants. Agricultural and Biological Chemistry, 50, 2301–2307.CrossRefGoogle Scholar
  19. 19.
    Cooper, D. G., & Goldenberg, B. G. (1987). Surface­active agents from two Bacillus species. Applied and Environmental Microbiology, 53, 224–229.Google Scholar
  20. 20.
    Zhang, J., Liu, Z., Wang, S., & Jiang, P. (2002). Characterization of a bioflocculant produced by the marine Myxobacterium nannocystis sp. NU-2. Applied and Environmental Microbiology, 59, 517–522.Google Scholar
  21. 21.
    Mata, J. N., Béjar, V., Llamas, I., Arias, S., Bressollier, P., Tallon, R., Urdaci, M. C., & Quesada, E. (2006). Exopolysaccharides produced by the recently described halophilic bacteria Halomonas ventosae and Halomonas anticariensis. Research in Microbiology, 157, 827–835.CrossRefGoogle Scholar
  22. 22.
    Bryan, B. A., Linhardt, R. J., & Daniels, L. (1986). Variation in composition and yield of exopolysaccharides produced by Klebsiella sp. strain K32 and Acinetobacter calcoaceticus BD4. Applied and Environmental Microbiology, 51, 1304–1308.Google Scholar
  23. 23.
    Gauri, S. S., Mandal, S. M., Mondal, K. C., Dey, S., & Pati, B. R. (2009). Enhanced production and partial characterization of an extracellular polysaccharide from newly isolated Azotobacter sp. SSB81. Bioresource Technology, 100, 4240–4243.CrossRefGoogle Scholar
  24. 24.
    Kaplan, N., & Rosenberg, E. (1982). Exopolysaccharide distribution of and bioemulsifier production by Acinetobacter calcoaceticus BD4 and BD413. Applied and Environmental Microbiology, 44, 1335–1341.Google Scholar
  25. 25.
    Deng, S., Yu, G., & Ting, Y. P. (2005). Production of a bioflocculant by Aspergillus parasiticus and its application in dye removal. Colloids and Surfaces. B, Biointerfaces, 44, 179–186.CrossRefGoogle Scholar
  26. 26.
    Beech, I., Hanjagsit, L., Kalaji, M., Neal, A. L., & Zinkevich, V. (1999). Chemical and structural characterization of exopolymers produced by Pseudomonas sp. NCIMB2021 in continuous culture. Microbiology, 145, 1491–1497.CrossRefGoogle Scholar
  27. 27.
    Elkady, M. F., Farag, S., Zaki, S., Abu-Elreesh, G., & Abd-El-Haleem, D. (2011). Bacillus mojavensis strain 32A, a bioflocculant-producing bacterium isolated from an Egyptian salt production pond. Bioresource Technology, 102, 8143–8815.CrossRefGoogle Scholar
  28. 28.
    Mishra, A., Kavita, K., & Jha, B. (2011). Characterization of extracellular polymeric substance produced by micro-algae Dunaliella salina. Carbohydrate Polymers, 82, 852–857.CrossRefGoogle Scholar
  29. 29.
    Kumar, C. G., Joo, H. S., & Choi, J. W. (2004). Purification and characterization of an extracellular polysaccharide from haloalkalophilic Bacillus sp. I-450. Enzyme and Microbial Technology, 34, 673–681.CrossRefGoogle Scholar
  30. 30.
    Schmidt, V., Giacomelli, C., & Soldi, V. (2005). Thermal stability of films formed by soy protein isolate–sodium dodecyl sulfate. Polymer Degradation and Stability, 87, 25–31.CrossRefGoogle Scholar
  31. 31.
    Freitas, F., Alves, V. D., Torres, C. A. V., Cruz, M., Sousa, I., Melo, M. J., Ramos, A. M., & Reis, M. A. M. (2011). Fucose-containing exopolysaccharide produced by the newly isolated Enterobacter strain A47 DSM 23139. Carbohydrate Polymers, 83, 159–165.CrossRefGoogle Scholar
  32. 32.
    Freitas, F., Alves, V. D., Pais, J., Costa, N., Oliveira, C., Mafra, L., Hilliou, L., Oliveira, R., & Reis, M. A. M. (2009). Characterization of an extracellular polysaccharide produced by a Pseudomonas strain grown on glycerol. Bioresource Technology, 100, 859–865.CrossRefGoogle Scholar
  33. 33.
    Wu, J. Y., & Ye, H. F. (2007). Characterization and flocculating properties of an extracellular biopolymer produced from a Bacillus subtilis DYU1 isolate. Process Biochemistry, 42, 1114–1123.CrossRefGoogle Scholar
  34. 34.
    Prasertsan, P., Dermlim, W., Doelle, H., & Kennedy, J. F. (2006). Screening, characterization and flocculating property of carbohydrate polymer from newly isolated Enterobacter cloacae WD7. Carbohydrate Polymer, 66, 289–297.CrossRefGoogle Scholar
  35. 35.
    Li, W. W., Zhou, W. Z., Zhang, Y. Z., Wang, J., & Zhu, X. B. (2008). Flocculation behavior and mechanism of an exopolysaccharide from the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913. Bioresource Technology, 99, 6893–6899.CrossRefGoogle Scholar
  36. 36.
    Goldstein, J., Newbury, D. E., Joy, D. C., Lyman, C. E., Echlin, P., & Lifshin, E. (2003). Scanning electron microscopy and X-ray micro analysis (3rd ed.). Dordrecht: Springer.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Krishna K. Yadav
    • 1
  • Amit K. Mandal
    • 1
  • Ipsita K. Sen
    • 2
  • Soumyananda Chakraborti
    • 3
  • Syed S. Islam
    • 2
  • Ranadhir Chakraborty
    • 1
    Email author
  1. 1.Omics Laboratory, Department of BiotechnologyUniversity of North BengalSiliguriIndia
  2. 2.Department of Chemistry and Chemical TechnologyVidyasagar UniversityMidnaporeIndia
  3. 3.Department of BiochemistryBose InstituteKolkataIndia

Personalised recommendations