Applied Biochemistry and Biotechnology

, Volume 168, Issue 5, pp 1311–1318 | Cite as

Animal Bone Char Solubilization with Itaconic Acid Produced by Free and Immobilized Aspergillus terreus Grown on Glycerol-Based Medium

  • Nikolay Vassilev
  • Almudena Medina
  • Bettina Eichler-Löbermann
  • Elena Flor-Peregrín
  • Maria Vassileva


Cells of Aspergillus terreus, free and immobilized in polyurethane foam, were employed in itaconic acid fermentation processes on glycerol-based media. The purpose was to assess their suitability for animal bone char solubilization and the development of a biotechnological alternative to P fertilizers chemically produced from rock phosphate. Animal bones constitute a renewable source of P that can replace the traditionally used finite, nonrenewable rock phosphate as a P source. Glycerol was an excellent substrate for growth (10.2 g biomass L−1) and itaconic acid production (26.9 g L−1) by free fungal cells after 120-h fermentation. Simultaneously, A. terreus solubilized the insoluble phosphate to a yield of 23 to 50 %, depending on the particle size and concentration. Polyurethane foam cut into cubes of 0.5–0.6 cm per side, with 0.3 mm pore size and applied at 2.0 g L−1 proved to be an excellent cell carrier. In repeated batch fermentation, the immobilized mycelium showed a high capacity to solubilize animal bone char, which resulted on average in 168.8 mg L–1 soluble phosphate per 48-h cycle and 59.4 % yield (percent of total phosphate) registered in the fourth batch.


Immobilized cells Aspergillus terreus Glycerol Animal bone char Solubilization 



This work was supported by Projects CTM2008-03524, CTM2011-027797 (Ministerio de Ciencia e Innovación, España), P09-RNM-5196 (Project from the Junta de Andalucía, Proyecto de Excelencia), and EU COST FA0905 and FA1103. NV is grateful for the SABF PR2010-0422—Ministerio de Educacion, España.


  1. 1.
    Heckrath, G., Brookes, P. C., Poulton, P. R., & Goulding, K. W. T. (1995). Journal of Environmental Quality, 24, 904–910.CrossRefGoogle Scholar
  2. 2.
    Stockdale, E. A., Shepard, M. A., Fortune, S., & Cuttle, S. P. (2002). Soil Use and Management, 18, 301–308.CrossRefGoogle Scholar
  3. 3.
    Cordell, D., Drangert, J. O., & White, S. (2009). Global Environmental Change, 19, 292–305.CrossRefGoogle Scholar
  4. 4.
    Eichler-Löbermann, B., Köhne, S., & Köppen, D. (2007). Journal of Plant Nutrition and Soil Science, 170, 623–628.CrossRefGoogle Scholar
  5. 5.
    Schiemenz, K., & Eichler-Löbermann, B. (2010). Nutrient Cycling in Agroecosystems, 87, 471–482.CrossRefGoogle Scholar
  6. 6.
    Elferink, E. (2009) Meat, milk and eggs: analysis of animal food environment relations. PhD Thesis, University Groningen.Google Scholar
  7. 7.
    Warren, G. P., Robinson, J. S., & Someus, E. (2009). Nutrient Cycling in Agroecosystems, 84, 167–178.CrossRefGoogle Scholar
  8. 8.
    Deydier, E., Guilet, R., Sarda, S., & Sharrock, P. (2005). Journal of Hazardous Materials, B121, 141–148.CrossRefGoogle Scholar
  9. 9.
    Conesa, J. A., Fullana, A., & Font, R. (2003). Journal of Analytical and Applied Pyrolysis, 70, 619–630.CrossRefGoogle Scholar
  10. 10.
    Vassilev, N., Reyes, A., Altmajer, D., Serrano, M., Sanchez, D. & Vassileva, M. (2010) In: Conference Proceedings of the 10th International Multidisciplinary Scientific Geo-Conference, STEF92 Technology Ltd., Sofia, vol. 2, pp. 521–528.Google Scholar
  11. 11.
    Fenice, M., Selbman, L., Federici, F., & Vassilev, N. (2000). Bioresource Technology, 73, 157–162.CrossRefGoogle Scholar
  12. 12.
    Vassileva, M., Azcon, R., Barea, J. M., & Vassilev, N. (1998). Journal of Biotechnology, 63, 67–72.CrossRefGoogle Scholar
  13. 13.
    Vassileva, M., Azcon, R., Barea, J. M., & Vassilev, N. (2000). Process Biochemistry, 35, 693–697.CrossRefGoogle Scholar
  14. 14.
    Vassilev, N., Vassileva, M., Azcon, R., Fenice, M., Federici, F., & Barea, J. M. (1998). Bioresource Technology, 66, 133–137.CrossRefGoogle Scholar
  15. 15.
    Vassilev, N., Vassileva, M., Azcon, R., & Medina, A. (2001). Journal of Biotechnology, 91, 237–242.CrossRefGoogle Scholar
  16. 16.
    Khan, R., Shahzad, S., Choudhary, M., Khan, S. A., & Ahmad, A. (2010). Pakistan Journal of Botany, 42, 1281–1287.Google Scholar
  17. 17.
    Melo, I. S., Faull, J. L., & Nascimento, R. S. (2006). Brazilian Journal of Microbiology, 37, 417–419.CrossRefGoogle Scholar
  18. 18.
    Wolfson, A., Litvak, G., Dlugy, C., Shortland, Y., & Tavor, D. (2009). Industrial Crops and Products, 30, 78–81.CrossRefGoogle Scholar
  19. 19.
    Kautola, H., Vassilev, N., & Linko, Y. Y. (1990). Journal of Biotechnology, 13, 315–323.CrossRefGoogle Scholar
  20. 20.
    Vassilev, N., Kautola, H., & Linko, Y. Y. (1992). Biotechnology Letters, 14, 201–206.CrossRefGoogle Scholar
  21. 21.
    Hartford, C. G. (1962). Analytical Chemistry, 34, 426–428.CrossRefGoogle Scholar
  22. 22.
    Milson, P. E., & Meers, J. L. (1985). In H. W. Blanch, S. Drew, & D. I. Wang (Eds.), Comprehensive biotechnology (Vol. 3, pp. 681–700). Oxford: Pergamon.Google Scholar
  23. 23.
    Hammond, L. L., Chien, S. H., Mokwunye, A. U., & Brady, N. C. (1986). Advance in Agronomy, 40, 89–140.CrossRefGoogle Scholar
  24. 24.
    Xiao, C.-Q., Chi, R.-A., Huang, X.-H., Zhang, W.-X., Qiu, G.-Z., & Wang, D.-Z. (2008). Ecological Engineering, 33, 187–193.CrossRefGoogle Scholar
  25. 25.
    Riscaldati, E., Moresi, M., Federici, F., & Petruccioli, M. (2000). Journal of Biotechnology, 83, 219–230.CrossRefGoogle Scholar
  26. 26.
    Cunningahm, J. E., & Kuiack, C. (1992). Applied and Environmental Microbiology, 58, 1451–1458.Google Scholar
  27. 27.
    Nahas, E. (1996). World Journal of Microbiology and Biotechnology, 12, 567–572.CrossRefGoogle Scholar
  28. 28.
    Petruccioli, M., & Angiani, E. (1995). Annali di Microbiologia ed Enzimologia, 45, 119–128.Google Scholar
  29. 29.
    Vassilev, N. & Vassileva, M. (1990). In J. A. M. de Bont, J. Visser, B. Mattiasson, & J. Tramper (Eds.), Physiology of immobilized cells (pp. 331–334). Elsevier.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nikolay Vassilev
    • 1
    • 4
  • Almudena Medina
    • 2
  • Bettina Eichler-Löbermann
    • 3
  • Elena Flor-Peregrín
    • 4
  • Maria Vassileva
    • 1
  1. 1.Department of Chemical Engineering, Faculty of SciencesUniversity of GranadaGranadaSpain
  2. 2.Netherlands Institute of Ecology (NIOO-KNAW)WageningenThe Netherlands
  3. 3.Department of Crop Science, Faculty of Agricultural and Environmental SciencesUniversity of RostockRostockGermany
  4. 4.Institute of BiotechnologyUniversity of GranadaGranadaSpain

Personalised recommendations