Applied Biochemistry and Biotechnology

, Volume 168, Issue 5, pp 1163–1196 | Cite as

New Tools for Exploring “Old Friends—Microbial Lipases”

  • Saisubramanian Nagarajan


Fat-splitting enzymes (lipases), due to their natural, industrial, and medical relevance, attract enough attention as fats do in our lives. Starting from the paper that we write, cheese and oil that we consume, detergent that we use to remove oil stains, biodiesel that we use as transportation fuel, to the enantiopure drugs that we use in therapeutics, all these applications are facilitated directly or indirectly by lipases. Due to their uniqueness, versatility, and dexterity, decades of research work have been carried out on microbial lipases. The hunt for novel lipases and strategies to improve them continues unabated as evidenced by new families of microbial lipases that are still being discovered mostly by metagenomic approaches. A separate database for true lipases termed LIPABASE has been created recently which provides taxonomic, structural, biochemical information about true lipases from various species. The present review attempts to summarize new approaches that are employed in various aspects of microbial lipase research, viz., screening, isolation, production, purification, improvement by protein engineering, and surface display. Finally, novel applications facilitated by microbial lipases are also presented.


Microbial lipases Metagenomic approaches Laboratory evolution Surface display 


  1. 1.
    Ferrato, F., Carriere, F., Sarda, L., & Verger, R. (1997). A critical reevaluation of the phenomenon of interfacial activation. Methods in Enzymology, 286, 327–347.Google Scholar
  2. 2.
    Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., et al. (1992). The alpha/beta hydrolase fold. Protein Engineering, 5, 197–211.Google Scholar
  3. 3.
    Svendsen, A. (2000). Lipase protein engineering. Biochimica et Biophysica Acta, 1543, 223–238.Google Scholar
  4. 4.
    Brzozowski, A. M., Derewenda, U., Derewenda, Z. S., Dodson, G. G., Lawson, D. M., et al. (1991). A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature, 351, 491–494.Google Scholar
  5. 5.
    Jaeger, K. E., & Reetz, M. T. (1998). Microbial lipases form versatile tools for biotechnology. Trends in Biotechnology, 16, 396–403.Google Scholar
  6. 6.
    Patton, J. S., & Carey, M. C. (1979). Watching fat digestion. Science, 204, 145–148.Google Scholar
  7. 7.
    Brockman, H. L., Law, J. H., & Kezdy, F. J. (1973). Catalysis by adsorbed enzymes. The hydrolysis of tripropionin by pancreatic lipase adsorbed to siliconized glass beads. Journal of Biological Chemistry, 248, 4965–4970.Google Scholar
  8. 8.
    Panaitov, I., & Verger, R. (2000). In A. Baszkin & W. Norde (Eds.), Physical chemistry of biological interfaces (pp. 359–400). New York: Marcel Dekker.Google Scholar
  9. 9.
    Reis, P., Holmberg, K., Watzke, H., Leser, M. E., & Miller, R. (2009). Lipases at interfaces: a review. Advances in Colloid and Interface Science, 147–148, 237–250.Google Scholar
  10. 10.
    Reis, P., Holmberg, K., Miller, R., Kragel, J., Grigoriev, D. O., et al. (2008). Competition between lipases and monoglycerides at interfaces. Langmuir, 24, 7400–7407.Google Scholar
  11. 11.
    Reis, P., Witula, T., & Holmberg, K. (2008). Mesoporous materials as host for an entrapped enzyme. Microporous and Mesoporous Materials, 110, 355–362.Google Scholar
  12. 12.
    Reis, P., Miller, R., Kragel, J., Leser, M., Fainerman, V. B., et al. (2008). Lipases at interfaces: unique interfacial properties as globular proteins. Langmuir, 24, 6812–6819.Google Scholar
  13. 13.
    Reis, P., Miller, R., Leser, M., Watzke, H., Fainerman, V. B., et al. (2008). Adsorption of polar lipids at the water-oil interface. Langmuir, 24, 5781–5786.Google Scholar
  14. 14.
    Akbari, N., Daneshjoo, S., Akbari, J., & Khajeh, K. (2011). Isolation, characterization, and catalytic properties of a novel lipase which is activated in ionic liquids and organic solvents. Applied Biochemistry and Biotechnology, 165, 785–794.Google Scholar
  15. 15.
    Idris, A., & Bukhari, A. (2012). Immobilized Candida antarctica lipase B: hydration, stripping off and application in ring opening polyester synthesis. Biotechnology Advances, 30, 550–563.Google Scholar
  16. 16.
    Ou, G., He, B., & Yuan, Y. (2011). Lipases are soluble and active in glycerol carbonate as a novel biosolvent. Enzyme and Microbial Technology, 49, 167–170.Google Scholar
  17. 17.
    Fischer, F., Mutschler, J., & Zufferey, D. (2011). Enzyme catalysis with small ionic liquid quantities. Journal of Industrial Microbiology and Biotechnology, 38, 477–487.Google Scholar
  18. 18.
    Kaar, J. L. (2011). Lipase activation and stabilization in room-temperature ionic liquids. Methods in Molecular Biology, 679, 25–35.Google Scholar
  19. 19.
    Willerding, A. L., de Oliveira, L. A., Moreira, F. W., Germano, M. G., & Chagas, A. F., Jr. (2011). Lipase activity among bacteria isolated from Amazonian soils. Enzyme Res, 2011, 720194.Google Scholar
  20. 20.
    Morohoshi, T., Oikawa, M., Sato, S., Kikuchi, N., Kato, N., et al. (2011). Isolation and characterization of novel lipases from a metagenomic library of the microbial community in the pitcher fluid of the carnivorous plant Nepenthes hybrida. Journal of Bioscience and Bioengineering, 112, 315–320.Google Scholar
  21. 21.
    Sarda, L., & Desnuelle, P. (1958). Actions of pancreatic lipase on esters in emulsions. Biochimica et Biophysica Acta, 30, 513–521.Google Scholar
  22. 22.
    Jaeger, K. E., Ransac, S., Dijkstra, B. W., Colson, C., van Heuvel, M., et al. (1994). Bacterial lipases. FEMS Microbiology Reviews, 15, 29–63.Google Scholar
  23. 23.
    Ali, Y. B., Verger, R., & Abousalham, A. (2012). Lipases or esterases: does it really matter? Toward a new bio-physico-chemical classification. Methods in Molecular Biology, 861, 31–51.Google Scholar
  24. 24.
    Messaoudi, A., Belguith, H., Ghram, I., & Hamida, J. B. (2011). LIPABASE: a database for ‘true’ lipase family enzymes. International Journal of Bioinformatics Research and Applications, 7, 390–401.Google Scholar
  25. 25.
    Widmann, M., Juhl, P. B., & Pleiss, J. (2010). Structural classification by the lipase engineering database: a case study of Candida antarctica lipase A. BMC Genomics, 11, 123.Google Scholar
  26. 26.
    Lotti, M., & Alberghina, L. (2007). In J. Polaina & A. P. Maccabe (Eds.), Industrial enzymes (pp. 263–281). New York: Springer.Google Scholar
  27. 27.
    Brady, L., Brzozowski, A. M., Derewenda, Z. S., Dodson, E., Dodson, G., et al. (1990). A serine protease triad forms the catalytic centre of a triacylglycerol lipase. Nature, 343, 767–770.Google Scholar
  28. 28.
    Van Pouderoyen, G., Eggert, T., Jaeger, K. E., & Dijkstra, B. W. (2001). The crystal structure of Bacillus subtilis lipase: a minimal alpha/beta hydrolase fold enzyme. Journal of Molecular Biology, 309, 215–226.Google Scholar
  29. 29.
    Derewenda, Z. S., Derewenda, U., & Dodson, G. G. (1992). The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 A resolution. Journal of Molecular Biology, 227, 818–839.Google Scholar
  30. 30.
    Brocca, S., Secundo, F., Ossola, M., Alberghina, L., Carrea, G., et al. (2003). Sequence of the lid affects activity and specificity of Candida rugosa lipase isoenzymes. Protein Science, 12, 2312–2319.Google Scholar
  31. 31.
    Bassegoda, A., Pastor, F. I., & Diaz, P. (2012). Rhodococcus sp. strain CR-53 LipR, the first member of a new bacterial lipase family (family X) displaying an unusual Y-type oxyanion hole, similar to the Candida antarctica lipase clan. Applied and Environmental Microbiology, 78, 1724–1732.Google Scholar
  32. 32.
    Lou, Z., Li, M., Sun, Y., Liu, Y., Liu, Z., et al. (2010). Crystal structure of a secreted lipase from Gibberella zeae reveals a novel “double-lock” mechanism. Protein & Cell, 1, 760–770.Google Scholar
  33. 33.
    Cherukuvada, S. L., Seshasayee, A. S., Raghunathan, K., Anishetty, S., & Pennathur, G. (2005). Evidence of a double-lid movement in Pseudomonas aeruginosa lipase: insights from molecular dynamics simulations. PLoS Computational Biology, 1, e28.Google Scholar
  34. 34.
    Xu, T., Liu, L., Hou, S., Xu, J., Yang, B., et al. (2012). Crystal structure of a mono- and diacylglycerol lipase from Malassezia globosa reveals a novel lid conformation and insights into the substrate specificity. Journal of Structural Biology, 178, 363–369.Google Scholar
  35. 35.
    Mancheno, J. M., Pernas, M. A., Martinez, M. J., Ochoa, B., Rua, M. L., et al. (2003). Structural insights into the lipase/esterase behavior in the Candida rugosa lipases family: crystal structure of the lipase 2 isoenzyme at 1.97A resolution. Journal of Molecular Biology, 332, 1059–1069.Google Scholar
  36. 36.
    Akoh, C. C., Lee, G. C., & Shaw, J. F. (2004). Protein engineering and applications of Candida rugosa lipase isoforms. Lipids, 39, 513–526.Google Scholar
  37. 37.
    Piamtongkam, R., Duquesne, S., Bordes, F., Barbe, S., Andre, I., et al. (2011). Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Biotechnology and Bioengineering, 108, 1749–1756.Google Scholar
  38. 38.
    Pleiss, J., Scheib, H., & Schmid, R. D. (2000). The His gap motif in microbial lipases: a determinant of stereoselectivity toward triacylglycerols and analogs. Biochimie, 82, 1043–1052.Google Scholar
  39. 39.
    Mala, J. G., & Takeuchi, S. (2008). Understanding structural features of microbial lipases—an overview. Analytical Chemistry Insights, 3, 9–19.Google Scholar
  40. 40.
    Mukherjee, K. D. (1994). Plant lipases and their application in lipid biotransformations. Progress in Lipid Research, 33, 165–174.Google Scholar
  41. 41.
    Barros, M., Fleuri, L. F., & Macedo, G. A. (2010). Seed lipases sources applications and properties—a review. Brazilian Journal of Chemical Engineering, 27, 15–29.Google Scholar
  42. 42.
    Dominguez de Maria, P., Sinisterra, J. V., Tsai, S. W., & Alcantara, A. R. (2006). Carica papaya lipase (CPL): an emerging and versatile biocatalyst. Biotechnology Advances, 24, 493–499.Google Scholar
  43. 43.
    Abdelkafi, S., Barouh, N., Fouquet, B., Fendri, I., Pina, M., et al. (2011). Carica papaya lipase: a naturally immobilized enzyme with interesting biochemical properties. Plant Foods for Human Nutrition, 66, 34–40.Google Scholar
  44. 44.
    Rivera, I., Mateos-Diaz, J. C., & Sandoval, G. (2012). Plant lipases: partial purification of Carica papaya lipase. Methods in Molecular Biology, 861, 115–122.Google Scholar
  45. 45.
    Wong, H., & Schotz, M. C. (2002). The lipase gene family. Journal of Lipid Research, 43, 993–999.Google Scholar
  46. 46.
    Hui, D. Y., & Howles, P. N. (2002). Carboxyl ester lipase: structure-function relationship and physiological role in lipoprotein metabolism and atherosclerosis. Journal of Lipid Research, 43, 2017–2030.Google Scholar
  47. 47.
    Kurtovic, I., Marshall, S. N., Zhao, X., & Simpson, B. K. (2009). Lipases from mammals and fishes. Reviews in Fisheries Science, 17, 18–40.Google Scholar
  48. 48.
    Amara, S., Fendri, A., Ben Salem, N., Gargouri, Y., & Miled, N. (2010). Snail hepatopancreatic lipase: a new member of invertebrates lipases' group. Applied Biochemistry and Biotechnology, 162, 942–952.Google Scholar
  49. 49.
    Zouari, N., Miled, N., Rouis, S., & Gargouri, Y. (2007). Scorpion digestive lipase: a member of a new invertebrate's lipase group presenting novel characteristics. Biochimie, 89, 403–409.Google Scholar
  50. 50.
    Cherif, S., Fendri, A., Miled, N., Trabelsi, H., Mejdoub, H., et al. (2007). Crab digestive lipase acting at high temperature: purification and biochemical characterization. Biochimie, 89, 1012–1018.Google Scholar
  51. 51.
    Vulfson, E. (1994). In P. Wooley & S. B. Peterson (Eds.), Lipases their structure biochemistry and applications (pp. 271–288). Cambridge: Cambridge University Press.Google Scholar
  52. 52.
    Saxena, R. K., Sheoran, A., Giri, B., & Davidson, W. S. (2003). Purification strategies for microbial lipases. Journal of Microbiological Methods, 52, 1–18.Google Scholar
  53. 53.
    Jaeger, K. E., Dijkstra, B. W., & Reetz, M. T. (1999). Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Annual Review of Microbiology, 53, 315–351.Google Scholar
  54. 54.
    Jaeger, K. E., & Eggert, T. (2002). Lipases for biotechnology. Current Opinion in Biotechnology, 13, 390–397.Google Scholar
  55. 55.
    Pandey, A., Benjamin, S., Soccol, C. R., Nigam, P., Krieger, N., et al. (1999). The realm of microbial lipases in biotechnology. Biotechnology and Applied Biochemistry, 29(Pt 2), 119–131.Google Scholar
  56. 56.
    Singh, A. K., & Mukhopadhyay, M. (2012). Overview of fungal lipase: a review. Applied Biochemistry and Biotechnology, 166, 486–520.Google Scholar
  57. 57.
    Derewenda, U., Swenson, L., Green, R., Wei, Y., Yamaguchi, S., et al. (1994). Current progress in crystallographic studies of new lipases from filamentous fungi. Protein Engineering, 7, 551–557.Google Scholar
  58. 58.
    Houde, A., Kademi, A., & Leblanc, D. (2004). Lipases and their industrial applications: an overview. Applied Biochemistry and Biotechnology, 118, 155–170.Google Scholar
  59. 59.
    Gunasekaran, V., & Das, D. (2005). Lipase fermentation progress and prospects. Indian Journal of Biotechnology, 4, 437–445.Google Scholar
  60. 60.
    Cardenas, F., de Castro, M. S., Sanchez-Montero, J. M., Sinisterra, J. V., Valmaseda, M., et al. (2001). Novel microbial lipases: catalytic activity in reactions in organic media. Enzyme and Microbial Technology, 28, 145–154.Google Scholar
  61. 61.
    Ghosh, P. K., Saxena, R. K., Gupta, R., Yadav, R. P., & Davidson, S. (1996). Microbial lipases: productions and applications. Science Progress, 79, 119–157.Google Scholar
  62. 62.
    Singh, A. K., & Mukhopadhyay, M. (2012). Overview of fungal lipase: a review. Applied Biochemistry and Biotechnology, 166, 486–520.Google Scholar
  63. 63.
    Gandhi, N. N. (1997). Applications of lipase. Journal of the American Oil Chemists' Society, 74, 621–634.Google Scholar
  64. 64.
    Lin, E.-S., & Ko, H.-C. (2005). Glucose stimulates production of the alkaline-thermostable lipase of the edible basidiomycete Antrodia cinnamomea. Enzyme and Microbial Technology, 37, 261–265.Google Scholar
  65. 65.
    Gutarra, M. L., Godoy, M. G., Maugeri, F., Rodrigues, M. I., Freire, D. M., et al. (2009). Production of an acidic and thermostable lipase of the mesophilic fungus Penicillium simplicissimum by solid-state fermentation. Bioresource Technology, 100, 5249–5254.Google Scholar
  66. 66.
    Velasco-Lozano, S., Volke-Sepulveda, T., & Favela-Torres, E. (2012). Lipases production by solid-state fermentation: the case of Rhizopus homothallicus in perlite. Methods in Molecular Biology, 861, 227–237.Google Scholar
  67. 67.
    Gutarra, M. L., de Godoy, M. G., Silva Jdo, N., Guedes, I. A., Lins, U., et al. (2009). Lipase production and Penicillium simplicissimum morphology in solid-state and submerged fermentations. Biotechnology Journal, 4, 1450–1459.Google Scholar
  68. 68.
    Mala, J. G., Edwinoliver, N. G., Kamini, N. R., & Puvanakrishnan, R. (2007). Mixed substrate solid state fermentation for production and extraction of lipase from Aspergillus niger MTCC 2594. Journal of General and Applied Microbiology, 53, 247–253.Google Scholar
  69. 69.
    Maheshwari, R., Bharadwaj, G., & Bhat, M. K. (2000). Thermophilic fungi: their physiology and enzymes. Microbiology and Molecular Biology Reviews, 64, 461–488.Google Scholar
  70. 70.
    Saisubramanian, N., Edwinoliver, N. G., Nandakumar, N., Kamini, N. R., & Puvanakrishnan, R. (2006). Efficacy of lipase from Aspergillus niger as an additive in detergent formulations: a statistical approach. Journal of Industrial Microbiology and Biotechnology, 33, 669–676.Google Scholar
  71. 71.
    Contesini, F., Lopes, D., Macedo, G., Nascimento, M., & Carvalho, P. (2010). Aspergillus sp. lipase: potential biocatalyst for industrial use. Journal of Molecular Catalysis B: Enzymatic, 67, 163–171.Google Scholar
  72. 72.
    Dominguez de Maria, P., Sanchez-Montero, J. M., Sinisterra, J. V., & Alcantara, A. R. (2006). Understanding Candida rugosa lipases: an overview. Biotechnology Advances, 24, 180–196.Google Scholar
  73. 73.
    Liou, Y.-C., Marangoni, A. G., & Yada, R. Y. (1998). Aggregation behavior of Candida rugosa lipase. Food Research International, 31, 243–248.Google Scholar
  74. 74.
    de Maria, P. D., Sanchez-Montero, J. M., Alcantara, A. R., Valero, F., & Sinisterra, J. V. (2005). Rational strategy for the production of new crude lipases from Candida rugosa. Biotechnology Letters, 27, 499–503.Google Scholar
  75. 75.
    Lopez, N., Pernas, M. A., Pastrana, L. M., Sanchez, A., Valero, F., et al. (2004). Reactivity of pure Candida rugosa lipase isoenzymes (Lip1, Lip2, and Lip3) in aqueous and organic media. influence of the isoenzymatic profile on the lipase performance in organic media. Biotechnology Progress, 20, 65–73.Google Scholar
  76. 76.
    Benjamin, S., & Pandey, A. (1998). Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast, 14, 1069–1087.Google Scholar
  77. 77.
    Vakhlu, J., Kour, A. (2006). Yeast lipases: enzyme purification, biochemical properties and gene cloning. Electronic Journal of Biotechnology, 9.Google Scholar
  78. 78.
    Fickers, P., Marty, A., & Nicaud, J. M. (2011). The lipases from Yarrowia lipolytica: genetics, production, regulation, biochemical characterization and biotechnological applications. Biotechnology Advances, 29, 632–644.Google Scholar
  79. 79.
    Lee, K. H., Park, C. H., & Lee, E. Y. (2010). Biosynthesis of glycerol carbonate from glycerol by lipase in dimethyl carbonate as the solvent. Bioprocess and Biosystems Engineering, 33, 1059–1065.Google Scholar
  80. 80.
    Neta, N. S., Peres, A. M., Teixeira, J. A., & Rodrigues, L. R. (2011). Maximization of fructose esters synthesis by response surface methodology. New Biotechnology, 28, 349–355.Google Scholar
  81. 81.
    Kirk, O., & Christensen, M. W. (2002). Lipases from Candida antarctica: unique biocatalysts from a unique origin. Organic Process Research & Development, 6, 446–451.Google Scholar
  82. 82.
    Goncalves, C., Lopes, M., Ferreira, J. P., & Belo, I. (2009). Biological treatment of olive mill wastewater by non-conventional yeasts. Bioresource Technology, 100, 3759–3763.Google Scholar
  83. 83.
    Holmquist, M. (1998). Insights into the molecular basis for fatty acyl specificities of lipases from Geotrichum candidum and Candida rugosa. Chemistry and Physics of Lipids, 93, 57–66.Google Scholar
  84. 84.
    Ciafardini, G., Zullo, B. A., Cioccia, G., & Iride, A. (2006). Lipolytic activity of Williopsis californica and Saccharomyces cerevisiae in extra virgin olive oil. International Journal of Food Microbiology, 107, 27–32.Google Scholar
  85. 85.
    Deive, F. J., Costas, M., & Longo, M. A. (2003). Production of a thermostable extracellular lipase by Kluyveromyces marxianus. Biotechnology Letters, 25, 1403–1406.Google Scholar
  86. 86.
    Bussamara, R., Fuentefria, A. M., de Oliveira, E. S., Broetto, L., Simcikova, M., et al. (2010). Isolation of a lipase-secreting yeast for enzyme production in a pilot-plant scale batch fermentation. Bioresource Technology, 101, 268–275.Google Scholar
  87. 87.
    Gupta, R., Gupta, N., & Rathi, P. (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64, 763–781.Google Scholar
  88. 88.
    El Khattabi, M., Ockhuijsen, C., Bitter, W., Jaeger, K. E., & Tommassen, J. (1999). Specificity of the lipase-specific foldases of gram-negative bacteria and the role of the membrane anchor. Molecular and General Genetics, 261, 770–776.Google Scholar
  89. 89.
    Arpigny, J. L., & Jaeger, K. E. (1999). Bacterial lipolytic enzymes: classification and properties. Biochemical Journal, 343(Pt 1), 177–183.Google Scholar
  90. 90.
    Rosenau, F., & Jaeger, K. (2000). Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion. Biochimie, 82, 1023–1032.Google Scholar
  91. 91.
    Rosenstein, R., & Gotz, F. (2000). Staphylococcal lipases: biochemical and molecular characterization. Biochimie, 82, 1005–1014.Google Scholar
  92. 92.
    Snellman, E. A., & Colwell, R. R. (2004). Acinetobacter lipases: molecular biology, biochemical properties and biotechnological potential. Journal of Industrial Microbiology and Biotechnology, 31, 391–400.Google Scholar
  93. 93.
    Angkawidjaja, C., & Kanaya, S. (2006). Family I.3 lipase: bacterial lipases secreted by the type I secretion system. Cellular and Molecular Life Sciences, 63, 2804–2817.Google Scholar
  94. 94.
    Guncheva, M., & Zhiryakova, D. (2011). Catalytic properties and potential applications of Bacillus lipases. Journal of Molecular Catalysis B: Enzymatic, 68, 1–21.Google Scholar
  95. 95.
    Rosenau, F., Tommassen, J., & Jaeger, K. E. (2004). Lipase-specific foldases. Chembiochem, 5, 152–161.Google Scholar
  96. 96.
    Reetz, M. T., & Jaeger, K. E. (1998). Overexpression, immobilization and biotechnological application of Pseudomonas lipases. Chemistry and Physics of Lipids, 93, 3–14.Google Scholar
  97. 97.
    Horchani, H., Aissa, I., Ouertani, S., Zarai, Z., Gargouri, Y., & Sayari, A. (2012). Staphylococcal lipases: biotechnological applications. Journal of Molecular Catalysis B: Enzymatic, 76, 125–132.Google Scholar
  98. 98.
    Cherif, S., Mnif, S., Hadrich, F., Abdelkafi, S., & Sayadi, S. (2011). A newly high alkaline lipase: an ideal choice for application in detergent formulations. Lipids in Health and Disease, 10, 221.Google Scholar
  99. 99.
    Han, S. J., Back, J. H., Yoon, M. Y., Shin, P. K., Cheong, C. S., et al. (2003). Expression and characterization of a novel enantioselective lipase from Acinetobacter species SY-01. Biochimie, 85, 501–510.Google Scholar
  100. 100.
    Martinez, D. A., & Nudel, B. C. (2002). The improvement of lipase secretion and stability by addition of inert compounds into Acinetobacter calcoaceticus cultures. Canadian Journal of Microbiology, 48, 1056–1061.Google Scholar
  101. 101.
    Wang, H., Zhang, J., Wang, X., Qi, W., & Dai, Y. (2012). Genome shuffling improves production of the low-temperature alkalophilic lipase by Acinetobacter johnsonii. Biotechnology Letters, 34, 145–151.Google Scholar
  102. 102.
    Khoramnia, A., Ebrahimpour, A., Beh, B.K., & Lai, O.M. (2011). Production of a solvent, detergent, and thermotolerant lipase by a newly isolated Acinetobacter sp. in submerged and solid-state fermentations. Journal of Biomedicine and Biotechnology, Article ID 702179. doi: 10.1155/2011/702179.
  103. 103.
    Ahmed, E. H., Raghavendra, T., & Madamwar, D. (2010). An alkaline lipase from organic solvent tolerant Acinetobacter sp. EH28: application for ethyl caprylate synthesis. Bioresource Technology, 101, 3628–3634.Google Scholar
  104. 104.
    Snellman, E. A., & Colwell, R. R. (2008). Transesterification activity of a novel lipase from Acinetobacter venetianus RAG-1. Antonie Leeuwenhoek, 94, 621–625.Google Scholar
  105. 105.
    Saisubramanian, N., Sivasubramanian, S., Nandakumar, N., Indirakumar, B., Chaudhary, N. A., et al. (2008). Two step purification of Acinetobacter sp. lipase and its evaluation as a detergent additive at low temperatures. Applied Biochemistry and Biotechnology, 150, 139–156.Google Scholar
  106. 106.
    Haki, G. D., & Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: a review. Bioresource Technology, 89, 17–34.Google Scholar
  107. 107.
    Kittikun, H., Prasertsan, P., Zimmermann, W., Seesuriyachan, P., & Chaiyaso, T. (2012). Sugar ester synthesis by thermostable lipase from Streptomyces thermocarboxydus ME168. Applied Biochemistry and Biotechnology, 166, 1969–1982.Google Scholar
  108. 108.
    Faoro, H., Glogauer, A., Couto, G. H., de Souza, E. M., Rigo, L. U., et al. (2012). Characterization of a new Acidobacteria-derived moderately thermostable lipase from a Brazilian Atlantic Forest soil metagenome. FEMS Microbiology Ecology, 81, 386–394.Google Scholar
  109. 109.
    Ali, M. S., Yun, C. C., Chor, A. L., Rahman, R. N., Basri, M., et al. (2012). Purification and characterisation of an F16L mutant of a thermostable lipase. The Protein Journal, 31, 229–237.Google Scholar
  110. 110.
    Cordenons, A., Gonzalez, R., Kok, R., Hellingwerf, K. J., & Nudel, C. (1996). Effect of nitrogen sources on the regulation of extracellular lipase production in Acinetobacter calcoaceticus strains. Biotechnology Letters, 18, 633–638.Google Scholar
  111. 111.
    Ahmad, S., Kamal, M. Z., Sankaranarayanan, R., & Rao, N. M. (2008). Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight. Journal of Molecular Biology, 381, 324–340.Google Scholar
  112. 112.
    Le, Q. A., Joo, J. C., Yoo, Y. J., & Kim, Y. H. (2012). Development of thermostable Candida antarctica lipase B through novel in silico design of disulfide bridge. Biotechnology and Bioengineering, 109, 867–876.Google Scholar
  113. 113.
    Sharma, P. K., Kumar, R., Mohammad, O., Singh, R., & Kaur, J. (2012). Engineering of a metagenome derived lipase toward thermal tolerance: effect of asparagine to lysine mutation on the protein surface. Gene, 491, 264–271.Google Scholar
  114. 114.
    Chakravorty, D., Parameswaran, S., Dubey, V. K., & Patra, S. (2011). In silico characterization of thermostable lipases. Extremophiles, 15, 89–103.Google Scholar
  115. 115.
    Joseph, B., Ramteke, P. W., & Thomas, G. (2008). Cold active microbial lipases: Some hot issues and recent developments. Biotechnology Advances, 26, 457–470.Google Scholar
  116. 116.
    Rashid, N., Shimada, Y., Ezaki, S., Atomi, H., & Imanaka, T. (2001). Low-temperature lipase from psychrotrophic Pseudomonas sp. strain KB700A. Applied and Environmental Microbiology, 67, 4064–4069.Google Scholar
  117. 117.
    Kim, H. R., Kim, I. H., Hou, C. T., Kwon, K. I., & Shin, B. S. (2010). Production of a novel cold-active lipase from Pichia lynferdii Y-7723. Journal of Agricultural and Food Chemistry, 58, 1322–1326.Google Scholar
  118. 118.
    Jeon, J. H., Kim, J. T., Lee, H. S., Kim, S. J., Kang, S. G., et al. (2011). Novel lipolytic enzymes identified from metagenomic library of deep-sea sediment. Evidence-based Complementary and Alternative Medicine, 2011, 271419.Google Scholar
  119. 119.
    Gerday, C., Aittaleb, M., Arpigny, J. L., Baise, E., Chessa, J. P., et al. (1997). Psychrophilic enzymes: a thermodynamic challenge. Biochimica et Biophysica Acta, 1342, 119–131.Google Scholar
  120. 120.
    Alquati, C., De Gioia, L., Santarossa, G., Alberghina, L., Fantucci, P., et al. (2002). The cold-active lipase of Pseudomonas fragi. Heterologous expression, biochemical characterization and molecular modeling. European Journal of Biochemistry, 269, 3321–3328.Google Scholar
  121. 121.
    Suzuki, T., Nakayama, T., Kurihara, T., Nishino, T., & Esaki, N. (2001). Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain no. 6. Journal of Bioscience and Bioengineering, 92, 144–148.Google Scholar
  122. 122.
    Qi, W., Shao, J., Wang, H. K., Wei, Y. J., & Zhang, J. (2011). A novel low-temperature alkaline lipase from Acinetobacter johnsonii LP28 suitable for detergent formulation. Food Technology and Biotechnology, 49, 96–102.Google Scholar
  123. 123.
    Sidhu, P., Sharma, R., Soni, S. K., & Gupta, J. K. (1998). Production of extracellular alkaline lipase by a new thermophilic Bacillus sp. Folia Microbiologica, 43, 51–54.Google Scholar
  124. 124.
    Masahiro, M., Ehsan, A., Du, D., & Park, E. Y. (2009). Characterization and optimization of extracellular alkaline lipase production by Alcaligenes sp. using stearic acid as carbon source. Biotechnology and Bioprocess Engineering, 14, 193–201.Google Scholar
  125. 125.
    Gupta, N., Sahaib, V., & Gupta, R. (2007). Alkaline lipase from a novel strain Burkholderia multivorans: statistical medium optimization and production in a bioreactor. Process Biochemistry, 42, 518–526.Google Scholar
  126. 126.
    Lin, S. F., Chiou, C. M., Yeh, C. M., & Tsai, Y. C. (1996). Purification and partial characterization of an alkaline lipase from Pseudomonas pseudoalcaligenes F-111. Applied and Environmental Microbiology, 62, 1093–1095.Google Scholar
  127. 127.
    Joshi, G. K., Kumar, S., Tripathi, B. N., & Sharma, V. (2006). Production of alkaline lipase by Corynebacterium paurometabolum, MTCC 6841 isolated from Lake Naukuchiatal, Uttaranchal State, India. Current Microbiology, 52, 354–358.Google Scholar
  128. 128.
    Bouaziz, A., Horchani, H., Ben Salem, N., Gargouri, Y., & Sayari, A. (2011). Expression, purification of a novel alkaline Staphylococcus xylosus lipase acting at high temperature. Biochemical Eng J, 54, 93–102.Google Scholar
  129. 129.
    Mander, P., Cho, S. S., Simkhada, J. R., Choi, Y. H., Park, D. J., et al. (2012). An organic solvent-tolerant alkaline lipase from Streptomyces sp. CS268 and its application in biodiesel production. Biotechnology and Bioprocess Engineering, 17, 67–75.Google Scholar
  130. 130.
    Dai, D., & Xia, L. (2005). Enhanced production of Penicillium expansum PED-03 lipase through control of culture conditions and application of the crude enzyme in kinetic resolution of racemic allethrolone. Biotechnology Progress, 21, 1165–1168.Google Scholar
  131. 131.
    HueyMin, H., Liu, R., Jiang, X., Mou, H., Guan, H., Huang, H., et al. (2009). A novel low-temperature resistant alkaline lipase from a soda lake fungus strain Fusarium solani N4-2 for detergent formulation. Biochemical Engineering Journal, 46, 265–270.Google Scholar
  132. 132.
    Yoo, H. Y., Simkhada, J. R., Cho, S. S., Park, D. H., Kim, S. W., et al. (2011). A novel alkaline lipase from Ralstonia with potential application in biodiesel production. Bioresource Technology, 102, 6104–6111.Google Scholar
  133. 133.
    Salameh, M. A., & Wiegel, J. (2010). Effects of detergents on activity, thermostability and aggregation of two alkalithermophilic lipases from Thermosyntropha lipolytica. Open Biochemistry Journal, 4, 22–28.Google Scholar
  134. 134.
    Romdhane, I. B., Frikha, F., Maalej-Achouri, I., Gargouri, A., & Belghith, H. (2012). Gene cloning and molecular characterization of the Talaromyces thermophilus lipase catalyzed efficient hydrolysis and synthesis of esters. Gene, 494, 112–118.Google Scholar
  135. 135.
    Kim, E. Y., Oh, K. H., Lee, M. H., Kang, C. H., Oh, T. K., et al. (2009). Novel cold-adapted alkaline lipase from an intertidal flat metagenome and proposal for a new family of bacterial lipases. Applied and Environmental Microbiology, 75, 257–260.Google Scholar
  136. 136.
    Mahadik, N. D., Puntambekar, U. S., Bastawde, K. B., Khire, J. M., & Gokhale, D. V. (2002). Production of acidic lipase by Aspergillus niger in solid state fermentation. Process Biochemistry, 38, 715–721.Google Scholar
  137. 137.
    Colin, V. L., Baigori, M. D., & Pera, L. M. (2010). Effect of environmental conditions on extracellular lipases production and fungal morphology from Aspergillus niger MYA 135. Journal of Basic Microbiology, 50, 52–58.Google Scholar
  138. 138.
    Doukyu, N., & Ogino, H. (2010). Organic solvent tolerant enzymes. Biochemical Engineering Journal, 48, 270–282.Google Scholar
  139. 139.
    Shu, Z. Y., Wu, J. G., Cheng, L. X., Chen, D., Jiang, Y. M., et al. (2012). Production and characteristics of the whole-cell lipase from organic solvent tolerant Burkholderia sp. ZYB002. Applied Biochemistry and Biotechnology, 166, 536–548.Google Scholar
  140. 140.
    Xu, J.-H., Zhao, L.-L., Zhao, J., Pan, J., & Wang, Z.-L. (2008). An organic solvent tolerant lipase from Serratia marcescens ECU1010: biochemical characterization and practical application. Journal of Biotechnology, 136, S51.Google Scholar
  141. 141.
    Grognux, J., & Reymond, J. L. (2004). Classifying enzymes from selectivity fingerprints. Chembiochem, 5, 826–831.Google Scholar
  142. 142.
    Jensen, R. G. (1983). Detection and determination of lipase (acylglycerol hydrolase) activity from various sources. Lipids, 18, 650–657.Google Scholar
  143. 143.
    Beisson, F., Tiss, A., Riviere, C., & Verger, R. (2000). Methods for lipase detection and assay: a critical review. European Journal of Lipid Science and Technology, 102, 133–153.Google Scholar
  144. 144.
    Gupta, R., Rathi, P., Gupta, N., & Bradoo, S. (2003). Lipase assays for conventional and molecular screening: an overview. Biotechnology and Applied Biochemistry, 37, 63–71.Google Scholar
  145. 145.
    Zhang, J.-H., Lin, Y., Sun, Y.-F., Ye, Y.-R., Zheng, S.-P., et al. (2012). High-throughput screening of B factor saturation mutated Rhizomucor miehei lipase thermostability based on synthetic reaction. Enzyme and Microbial Technology, 50, 325–330.Google Scholar
  146. 146.
    Saisuburamaniyan, N., Krithika, L., Dileena, K. P., Sivasubramanian, S., & Puvanakrishnan, R. (2004). Lipase assay in soils by copper soap colorimetry. Analytical Biochemistry, 330, 70–73.Google Scholar
  147. 147.
    Feist, A. M., Herrgard, M. J., Thiele, I., Reed, J. L., & Palsson, B. O. (2009). Reconstruction of biochemical networks in microorganisms. Nature Reviews Microbiology, 7, 129–143.Google Scholar
  148. 148.
    Steele, H. L., Jaeger, K. E., Daniel, R., & Streit, W. R. (2009). Advances in recovery of novel biocatalysts from metagenomes. Journal of Molecular Microbiology and Biotechnology, 16, 25–37.Google Scholar
  149. 149.
    Fernandez-Arrojo, L., Guazzaroni, M. E., Lopez-Cortes, N., Beloqui, A., & Ferrer, M. (2010). Metagenomic era for biocatalyst identification. Current Opinion in Biotechnology, 21, 725–733.Google Scholar
  150. 150.
    Lee, S. W., Won, K., Lim, H. K., Kim, J. C., Choi, G. J., et al. (2004). Screening for novel lipolytic enzymes from uncultured soil microorganisms. Applied Microbiology and Biotechnology, 65, 720–726.Google Scholar
  151. 151.
    Cieslinski, H., Bialkowskaa, A., Tkaczuk, K., Dlugolecka, A., Kur, J., et al. (2009). Identification and molecular modeling of a novel lipase from an Antarctic soil metagenomic library. Polish Journal of Microbiology, 58, 199–204.Google Scholar
  152. 152.
    Couto, G. H., Glogauer, A., Faoro, H., Chubatsu, L. S., Souza, E. M., et al. (2010). Isolation of a novel lipase from a metagenomic library derived from mangrove sediment from the south Brazilian coast. Genetics and Molecular Research, 9, 514–523.Google Scholar
  153. 153.
    Tuffin, M., Anderson, D., Heath, C., & Cowan, D. A. (2009). Metagenomic gene discovery: how far have we moved into novel sequence space? Biotechnology Journal, 4, 1671–1683.Google Scholar
  154. 154.
    Glogauer, A., Martini, V. P., Faoro, H., Couto, G. H., Muller-Santos, M., et al. (2011). Identification and characterization of a new true lipase isolated through metagenomic approach. Microbial Cell Factories, 10, 54.Google Scholar
  155. 155.
    Martini, V. P., Glogauer, A., Iulek, J., Souza, E. M., Pedrosa, F. O., et al. (2012). Crystallization and preliminary crystallographic analysis of LipC12, a true lipase isolated through a metagenomics approach. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 68, 175–177.Google Scholar
  156. 156.
    Simon, C., & Daniel, R. (2011). Metagenomic analyses: past and future trends. Applied and Environmental Microbiology, 77, 1153–1161.Google Scholar
  157. 157.
    Rao, L., Xue, Y., Zhou, C., Tao, J., Li, G., et al. (2011). A thermostable esterase from Thermoanaerobacter tengcongensis opening up a new family of bacterial lipolytic enzymes. Biochimica et Biophysica Acta, 1814, 1695–1702.Google Scholar
  158. 158.
    Nacke, H., Will, C., Herzog, S., Nowka, B., Engelhaupt, M., et al. (2011). Identification of novel lipolytic genes and gene families by screening of metagenomic libraries derived from soil samples of the German Biodiversity Exploratories. FEMS Microbiology Ecology, 78, 188–201.Google Scholar
  159. 159.
    Vieites, J. M., Guazzaroni, M. E., Beloqui, A., Golyshin, P. N., & Ferrer, M. (2009). Metagenomics approaches in systems microbiology. FEMS Microbiology Reviews, 33, 236–255.Google Scholar
  160. 160.
    Kalyuzhnaya, M. G., Lapidus, A., Ivanova, N., Copeland, A. C., McHardy, A. C., et al. (2008). High-resolution metagenomics targets specific functional types in complex microbial communities. Nature Biotechnology, 26, 1029–1034.Google Scholar
  161. 161.
    Jehmlich, N., Schmidt, F., von Bergen, M., Richnow, H. H., & Vogt, C. (2008). Protein-based stable isotope probing (protein-SIP) reveals active species within anoxic mixed cultures. ISME Journal, 2, 1122–1133.Google Scholar
  162. 162.
    Bomar, L., Maltz, M., Colston, S., & Graf, J. (2011). Directed culturing of microorganisms using metatranscriptomics. MBio, 2(2), e00012-11. doi: 10.1128/mBio.00012-11.Google Scholar
  163. 163.
    Uchiyama, T., & Miyazaki, M. (2009). Functional metagenomics for enzyme discovery: challenges of efficient screening. Current Opinion in Biotechnology, 20, 616–622.Google Scholar
  164. 164.
    Shangguan, J. J., Liu, Y. Q., Wang, F. J., Zhao, J., Fan, L. Q., et al. (2011). Expression and characterization of a novel lipase from Aspergillus fumigatus with high specific activity. Applied Biochemistry and Biotechnology, 165, 949–962.Google Scholar
  165. 165.
    Najjar, A., Robert, S., Guerin, C., Violet-Asther, M., & Carriere, F. (2011). Quantitative study of lipase secretion, extracellular lipolysis, and lipid storage in the yeast Yarrowia lipolytica grown in the presence of olive oil: analogies with lipolysis in humans. Applied Microbiology and Biotechnology, 89, 1947–1962.Google Scholar
  166. 166.
    Jermsuntiea, W., Aki, T., Toyoura, R., Iwashita, K., Kawamoto, S., et al. (2011). Purification and characterization of intracellular lipase from the polyunsaturated fatty acid-producing fungus Mortierella alliacea. New Biotechnology, 28, 158–164.Google Scholar
  167. 167.
    Ham, H. J., Rho, H. J., Shin, S. K., & Yoon, H. J. (2010). The TGL2 gene of Saccharomyces cerevisiae encodes an active acylglycerol lipase located in the mitochondria. Journal of Biological Chemistry, 285, 3005–3013.Google Scholar
  168. 168.
    Deive, F. J., Carvalho, E., Pastrana, L., Rua, M. L., Longo, M. A., et al. (2009). Strategies for improving extracellular lipolytic enzyme production by Thermus thermophilus HB27. Bioresource Technology, 100, 3630–3637.Google Scholar
  169. 169.
    D'Annibale, A., Sermanni, G. G., Federici, F., & Petruccioli, M. (2006). Olive-mill wastewaters: a promising substrate for microbial lipase production. Bioresource Technology, 97, 1828–1833.Google Scholar
  170. 170.
    Dutta, S., & Ray, L. (2009). Production and characterization of an alkaline thermostable crude lipase from an isolated strain of Bacillus cereus C(7). Applied Biochemistry and Biotechnology, 159, 142–154.Google Scholar
  171. 171.
    Shariff, F. M., Leow, T. C., Mukred, A. D., Salleh, A. B., Basri, M., et al. (2007). Production of L2 lipase by Bacillus sp. strain L2: nutritional and physical factors. Journal of Basic Microbiology, 47, 406–412.Google Scholar
  172. 172.
    Chander, H., Bathish, V. K., Sannabhadti, S. S., & Srinivasan, R. A. (2006). Factors affecting lipase production in Aspergillus wentii. Journal of Food Science, 45, 598–600.Google Scholar
  173. 173.
    Joseph, B., Ramteke, P. W., & Kumar, P. A. (2006). Studies on the enhanced production of extracellular lipase by Staphylococcus epidermidis. Journal of General and Applied Microbiology, 52, 315–320.Google Scholar
  174. 174.
    Maia, M. M., Heasley, A., Camargo de Morais, M. M., Melo, E. H., Morais, M. A., Jr., et al. (2001). Effect of culture conditions on lipase production by Fusarium solani in batch fermentation. Bioresource Technology, 76, 23–27.Google Scholar
  175. 175.
    Ben Rebah, F., Frikha, F., Kamoun, W., Belbahri, L., Gargouri, Y., et al. (2008). Culture of Staphylococcus xylosus in fish processing by-product-based media for lipase production. Letters in Applied Microbiology, 47, 549–554.Google Scholar
  176. 176.
    Kambourova, M., Emanuilova, E., & Dimitrov, P. (1996). Influence of culture conditions on thermostable lipase production by a thermophilic alkalitolerant strain of Bacillus sp. Folia Microbiol (Praha), 41, 146–148.Google Scholar
  177. 177.
    Show, P. L., Tan, C. P., Shamsul Anuar, M., Ariff, A., Yusof, Y. A., et al. (2012). Extractive fermentation for improved production and recovery of lipase derived from Burkholderia cepacia using a thermoseparating polymer in aqueous two-phase systems. Bioresource Technology, 116, 226–233.Google Scholar
  178. 178.
    Fickers, P., Destain, J., & Thonart, P. (2009). Improvement of Yarrowia lipolytica lipase production by fed-batch fermentation. Journal of Basic Microbiology, 49, 212–215.Google Scholar
  179. 179.
    Montesinos, J. L., Dalmau, E., & Casas, C. (2003). Lipase production in continuous culture of Candida rugosa. J Chem Tech Biot, 78, 753–761.Google Scholar
  180. 180.
    Deive, F. J., Sanroman, M. A., & Longo, M. A. (2010). A comprehensive study of lipase production by Yarrowia lipolytica CECT 1240 (ATCC 18942): from shake flask to continuous bioreactor. Journal of Chemical Technology & Biotechnology, 85, 258–266.Google Scholar
  181. 181.
    Moftah, O. A., Grbavcic, S., Zuza, M., Lukovic, N., Bezbradica, D., et al. (2012). Adding value to the oil cake as a waste from oil processing industry: production of lipase and protease by Candida utilis in solid state fermentation. Applied Biochemistry and Biotechnology, 166, 348–364.Google Scholar
  182. 182.
    Lopez, E., Deive, F. J., Longo, M. A., & Sanroman, M. A. (2010). Strategies for utilisation of food-processing wastes to produce lipases in solid-state cultures of Rhizopus oryzae. Bioprocess and Biosystems Engineering, 33, 929–935.Google Scholar
  183. 183.
    Kempka, A. P., Lipke, N. L., da Luz Fontoura Pinheiro, T., Menoncin, S., Treichel, H., et al. (2008). Response surface method to optimize the production and characterization of lipase from Penicillium verrucosum in solid-state fermentation. Bioprocess and Biosystems Engineering, 31, 119–125.Google Scholar
  184. 184.
    Kumar, S., Katiyar, N., Ingle, P., & Negi, S. (2011). Use of evolutionary operation (EVOP) factorial design technique to develop a bioprocess using grease waste as a substrate for lipase production. Bioresource Technology, 102, 4909–4912.Google Scholar
  185. 185.
    Edwinoliver, N. G., Thirunavukarasu, K., Naidu, R. B., Gowthaman, M. K., Kambe, T. N., et al. (2010). Scale up of a novel tri-substrate fermentation for enhanced production of Aspergillus niger lipase for tallow hydrolysis. Bioresource Technology, 101, 6791–6796.Google Scholar
  186. 186.
    Treichel, H., de Oliveria, D., Mazutti, M. A., Luccio, M. D., & Oliveira, J. V. (2010). A review on microbial lipases production. Food and Bioprocess Technology, 3, 182–196.Google Scholar
  187. 187.
    Shimada, Y., Sugihara, A., & Tominaga, Y. (1994). Microbial lipase: structure and production. Bioprocess Technology, 19, 359–371.Google Scholar
  188. 188.
    Resina, D., Maurer, M., Cos, O., Arnau, C., Carnicer, M., et al. (2009). Engineering of bottlenecks in Rhizopus oryzae lipase production in Pichia pastoris using the nitrogen source-regulated FLD1 promoter. New Biotechnology, 25, 396–403.Google Scholar
  189. 189.
    Bas, D., & Boyaci, H. I. (2007). Modeling and optimization II: comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. Journal of Food Engineering, 78, 846–854.Google Scholar
  190. 190.
    Sifour, M., Zaghloul, T. I., Saeed, H. M., Berekaa, M. M., & Abdel-Fattah, Y. R. (2010). Enhanced production of lipase by the thermophilic Geobacillus stearothermophilus strain-5 using statistical experimental designs. New Biotechnology, 27, 330–336.Google Scholar
  191. 191.
    Olusesan, A. T., Azura, L. K., Abubakar, F., Mohamed, A. K., Radu, S., et al. (2011). Enhancement of thermostable lipase production by a genotypically identified extremophilic Bacillus subtilis NS 8 in a continuous bioreactor. Journal of Molecular Microbiology and Biotechnology, 20, 105–115.Google Scholar
  192. 192.
    Gupta, N., Mehra, G., & Gupta, R. (2004). A glycerol-inducible thermostable lipase from Bacillus sp.: medium optimization by a Plackett-Burman design and by response surface methodology. Canadian Journal of Microbiology, 50, 361–368.Google Scholar
  193. 193.
    Ebrahimpour, A., Abd Rahman, R. N., Ean Ch’ng, D. H., Basri, M., & Salleh, A. B. (2008). A modeling study by response surface methodology and artificial neural network on culture parameters optimization for thermostable lipase production from a newly isolated thermophilic Geobacillus sp. strain ARM. BMC Biotechnology, 8, 96.Google Scholar
  194. 194.
    Contesini, F. J., da Silva, V. C., Maciel, R. F., de Lima, R. J., Barros, F. F., et al. (2009). Response surface analysis for the production of an enantioselective lipase from Aspergillus niger by solid-state fermentation. Journal of Microbiology, 47, 563–571.Google Scholar
  195. 195.
    Chennupati, S., Potumarthi, R., Gopal Rao, M., Manga, P. L., Sridevi, M., et al. (2009). Multiple responses optimization and modeling of lipase production by Rhodotorula mucilaginosa MTCC-8737 using response surface methodology. Applied Biochemistry and Biotechnology, 159, 317–329.Google Scholar
  196. 196.
    Teng, Y., & Xu, Y. (2008). Culture condition improvement for whole-cell lipase production in submerged fermentation by Rhizopus chinensis using statistical method. Bioresource Technology, 99, 3900–3907.Google Scholar
  197. 197.
    Lan, D., Hou, S., Yang, N., Whiteley, C., Yang, B., et al. (2011). Optimal production and biochemical properties of a lipase from Candida albicans. International Journal of Molecular Sciences, 12, 7216–7237.Google Scholar
  198. 198.
    Rajendran, A., & Thangavelu, V. (2007). Optimization of medium composition for lipase production by Candida rugosa NCIM 3462 using response surface methodology. Canadian Journal of Microbiology, 53, 643–655.Google Scholar
  199. 199.
    Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence (p. 207). Cambridge: MIT Press.Google Scholar
  200. 200.
    Eberhart, R.C., Kennedy, J. (1995). A new optimizer using particle swarm theory. Proceedings of the Sixth International Symposium. Micro Machine and Human Science, Indianapolis, IN, pp. 39–43.Google Scholar
  201. 201.
    Garlapati, V. K., Vundavilli, P. R., & Banerjee, R. (2010). Evaluation of lipase production by genetic algorithm and particle swarm optimization and their comparative study. Applied Biochemistry and Biotechnology, 162, 1350–1361.Google Scholar
  202. 202.
    Talukder, M. R., Susanto, D., Feng, G., Wu, J., Choi, W. J., et al. (2007). Improvement in extraction and catalytic activity of Mucor javanicus lipase by modification of AOT reverse micelle. Biotechnology Journal, 2, 1369–1374.Google Scholar
  203. 203.
    Yu, Y. C., Chu, Y., & Ji, J. Y. (2003). Study of the factors affecting the forward and back extraction of yeast-lipase and its activity by reverse micelles. Journal of Colloid and Interface Science, 267, 60–64.Google Scholar
  204. 204.
    Taipa, M. A., Aires-Barros, M. R., & Cabral, J. M. (1992). Purification of lipases. Journal of Biotechnology, 26, 111–142.Google Scholar
  205. 205.
    Yujun, W., Jian, X., Guangsheng, L., & Youyuan, D. (2008). Immobilization of lipase by ultrafiltration and cross-linking onto the polysulfone membrane surface. Bioresource Technology, 99, 2299–2303.Google Scholar
  206. 206.
    Aires-Barros, M. R., & Cabral, J. M. (1991). Selective separation and purification of two lipases from Chromobacterium viscosum using AOT reversed micelles. Biotechnology and Bioengineering, 38, 1302–1307.Google Scholar
  207. 207.
    Yao, H., Zhang, T., Xue, H., Tang, K., & Li, R. (2011). Biomimetic affinity purification of Candida antarctica lipase B. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 879, 3896–3900.Google Scholar
  208. 208.
    Juntachai, W., Oura, T., & Kajiwara, S. (2011). Purification and characterization of a secretory lipolytic enzyme, MgLIP2, from Malassezia globosa. Microbiology, 157, 3492–3499.Google Scholar
  209. 209.
    Sikdar, S. K., Cole, K. D., Stewart, R. M., Szlag, D. C., Todd, P., et al. (1991). Aqueous two-phase extraction in bioseparations: an assessment. Biotechnology (N. Y), 9, 254–256.Google Scholar
  210. 210.
    Gupta, R., Bradoo, S., & Saxena, R. K. (1999). Aqueous two-phase systems: an attractive technology for downstream processing of biomolecules. Current Science, 77, 520–523.Google Scholar
  211. 211.
    Srinivas, N. D., Barhate, R. S., & Raghavarao, K. S. M. S. (2002). Aqueous two-phase extraction in combination with ultrafiltration for downstream processing of Ipomoea peroxidase. Journal of Food Engineering, 54, 1–6.Google Scholar
  212. 212.
    Terstappen, G. C., Geerts, A. J., & Kula, M. R. (1992). The use of detergent-based aqueous two-phase systems for the isolation of extracellular proteins: purification of a lipase from Pseudomonas cepacia. Biotechnology and Applied Biochemistry, 16, 228–235.Google Scholar
  213. 213.
    Bompensieri, S., Mahler, G. F., Castaneda, N., Miranda, M. V., Cascone, O., et al. (1998). Rapid purification of a lipase from Acenitobacter calcoaceticus by temperature-induced aqueous two-phase systems. Biotechnology Techniques, 12, 611–613.Google Scholar
  214. 214.
    Barbosa, J. M., Souza, R. L., Fricks, A. T., Zanin, G. M., Soares, C. M., et al. (2011). Purification of lipase produced by a new source of Bacillus in submerged fermentation using an aqueous two-phase system. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 879, 3853–3858.Google Scholar
  215. 215.
    Volpato, G., Filice, M., de las Rivas, B., Rodrigues, R. C., Heck, J. X., et al. (2011). Purification, immobilization, and characterization of a specific lipase from Staphylococcus warneri EX17 by enzyme fractionating via adsorption on different hydrophobic supports. Biotechnology Progress, 27, 717–723.Google Scholar
  216. 216.
    Volpato, G., Filice, M., Ayub, M. A., Guisan, J. M., & Palomo, J. M. (2010). Single-step purification of different lipases from Staphylococcus warneri. Journal of Chromatography A, 1217, 73–478.Google Scholar
  217. 217.
    Ventura, S. P., Sousa, S. G., Freire, M. G., Serafim, L. S., Lima, A. S., et al. (2011). Design of ionic liquids for lipase purification. Journal of Chromatography. B, Analytical Technologies in the Biomedical and Life Sciences, 879, 2679–2687.Google Scholar
  218. 218.
    Levasseur, A., Gouret, P., Lesage-Meessen, L., Asther, M., Record, E., et al. (2006). Tracking the connection between evolutionary and functional shifts using the fungal lipase/feruloyl esterase A family. BMC Evolutionary Biology, 6, 92.Google Scholar
  219. 219.
    Takwa, M., Larsen, M. W., Hult, K., & Martinelle, M. (2011). Rational redesign of Candida antarctica lipase B for the ring opening polymerization of D,D-lactide. Chemical Communications (Cambridge), 47, 7392–7394.Google Scholar
  220. 220.
    Brundiek, H. B., Evitt, A. S., Kourist, R., & Bornscheuer, U. T. (2012). Creation of a lipase highly selective for trans fatty acids by protein engineering. Angewandte Chemie (International Ed. in English), 51, 412–414.Google Scholar
  221. 221.
    Gumulya, Y., & Reetz, M. T. (2011). Enhancing the thermal robustness of an enzyme by directed evolution: least favorable starting points and inferior mutants can map superior evolutionary pathways. ChemBioChem, 12, 2502–2510.Google Scholar
  222. 222.
    Kolling, D. J., Bertoldo, J. B., Brod, F. C., Vernal, J., Terenzi, H., et al. (2010). Biochemical and structural characterization of two site-directed mutants of Staphylococcus xylosus lipase. Molecular Biotechnology, 46, 168–175.Google Scholar
  223. 223.
    Reetz, M. T., & Carballeira, J. D. (2007). Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nature Protocols, 2, 891–903.Google Scholar
  224. 224.
    Wong, H., Davis, R. C., Hill, J. S., Yang, D., & Schotz, M. C. (1997). Lipase engineering: a window into structure-function relationships. Methods in Enzymology, 284, 171–184.Google Scholar
  225. 225.
    Alberghina, L. (Ed.). (2000). Protein engineering in industrial biotechnology. Reading: Harwood Academic Publishers. pp 376.Google Scholar
  226. 226.
    Acharya, P., Rajakumara, E., Sankaranarayanan, R., & Rao, N. M. (2004). Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase. Journal of Molecular Biology, 341, 1271–1281.Google Scholar
  227. 227.
    Reetz, M. T., Prasad, S., Carballeira, J. D., Gumulya, Y., & Bocola, M. (2010). Iterative saturation mutagenesis accelerates laboratory evolution of enzyme stereoselectivity: rigorous comparison with traditional methods. Journal of the American Chemical Society, 132, 9144–9152.Google Scholar
  228. 228.
    Prasad, S., Bocola, M., & Reetz, M. T. (2011). Revisiting the lipase from Pseudomonas aeruginosa: directed evolution of substrate acceptance and enantioselectivity using iterative saturation mutagenesis. Chemphyschem, 12, 1550–1557.Google Scholar
  229. 229.
    Park, C. G., Kwon, M. A., Song, J. K., & Kim, D. M. (2011). Cell-free synthesis and multifold screening of Candida antarctica lipase B (CalB) variants after combinatorial mutagenesis of hot spots. Biotechnology Progress, 27, 47–53.Google Scholar
  230. 230.
    Schmidt, M., & Bornscheuer, U. T. (2005). High-throughput assays for lipases and esterases. Biomolecular Engineering, 22, 51–56.Google Scholar
  231. 231.
    Sandström, A. G., Wikmark, Y., Engström, K., Nyhlén, J., & Bäckvall, J. E. (2012). Combinatorial reshaping of the Candida antarctica lipase A substrate pocket for enantioselectivity using an extremely condensed library. Proceedings of the National Academy of Sciences, 109, 78–83.Google Scholar
  232. 232.
    Shu, Z., Duan, M., Yang, J., Xu, L., & Yan, Y. (2009). Aspergillus niger lipase: heterologous expression in Pichia pastoris, molecular modeling prediction and the importance of the hinge domains at both sides of the lid domain to interfacial activation. Biotechnology Progress, 25, 409–416.Google Scholar
  233. 233.
    Shu, Z., Wu, J., Xue, L., Lin, R., Jiang, Y., et al. (2011). Construction of Aspergillus niger lipase mutants with oil-water interface independence. Enzyme and Microbial Technology, 48, 129–133.Google Scholar
  234. 234.
    Becker, S., Theile, S., Heppeler, N., Michalczyk, A., Wentzel, A., et al. (2005). A generic system for the Escherichia coli cell-surface display of lipolytic enzymes. FEBS Letters, 579, 1177–1182.Google Scholar
  235. 235.
    Lee, S. H., Choi, J. I., Han, M. J., Choi, J. H., & Lee, S. Y. (2005). Display of lipase on the cell surface of Escherichia coli using OprF as an anchor and its application to enantioselective resolution in organic solvent. Biotechnology and Bioengineering, 90, 223–230.Google Scholar
  236. 236.
    Jung, H. C., Kwon, S. J., & Pan, J. G. (2006). Display of a thermostable lipase on the surface of a solvent-resistant bacterium, Pseudomonas putida GM730, and its applications in whole-cell biocatalysis. BMC Biotechnology, 6, 23.Google Scholar
  237. 237.
    Kobayashi, G., Fujii, K., Serizawa, M., Yamamoto, H., & Sekiguchi, J. (2002). Simultaneous display of bacterial and fungal lipases on the cell surface of Bacillus subtilis. Journal of Bioscience and Bioengineering, 93, 15–19.Google Scholar
  238. 238.
    Mormeneo, M., Andres, I., Bofill, C., Diaz, P., & Zueco, J. (2008). Efficient secretion of Bacillus subtilis lipase A in Saccharomyces cerevisiae by translational fusion to the Pir4 cell wall protein. Applied Microbiology and Biotechnology, 80, 437–445.Google Scholar
  239. 239.
    Ueda, M., & Tanaka, A. (2000). Cell surface engineering of yeast: construction of arming yeast with biocatalyst. Journal of Bioscience and Bioengineering, 90, 125–136.Google Scholar
  240. 240.
    Kato, M., Fuchimoto, J., Tanino, T., Kondo, A., Fukuda, H., et al. (2007). Preparation of a whole-cell biocatalyst of mutated Candida antarctica lipase B (mCALB) by a yeast molecular display system and its practical properties. Applied Microbiology and Biotechnology, 75, 549–555.Google Scholar
  241. 241.
    Tanino, T., Aoki, T., Chung, W. Y., Watanabe, Y., Ogino, C., et al. (2009). Improvement of a Candida antarctica lipase B-displaying yeast whole-cell biocatalyst and its application to the polyester synthesis reaction. Applied Microbiology and Biotechnology, 82, 59–66.Google Scholar
  242. 242.
    Liu, W., Zhao, H., Jia, B., Xu, L., & Yan, Y. (2010). Surface display of active lipase in Saccharomyces cerevisiae using Cwp2 as an anchor protein. Biotechnology Letters, 32, 255–260.Google Scholar
  243. 243.
    Liu, W. S., Pan, X. X., Jia, B., Zhao, H. Y., Xu, L., et al. (2010). Surface display of active lipases Lip7 and Lip8 from Yarrowia lipolytica on Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 88, 885–891.Google Scholar
  244. 244.
    Han, S. Y., Zhang, J. H., Han, Z. L., Zheng, S. P., & Lin, Y. (2011). Combination of site-directed mutagenesis and yeast surface display enhances Rhizomucor miehei lipase esterification activity in organic solvent. Biotechnology Letters, 33, 2431–2438.Google Scholar
  245. 245.
    Baek, J. H., Han, M. J., Lee, S. H., & Lee, S. Y. (2010). Enhanced display of lipase on the Escherichia coli cell surface, based on transcriptome analysis. Applied and Environmental Microbiology, 76, 971–973.Google Scholar
  246. 246.
    Ribeiro, B. D., de Castro, A. M., Coelho, M. A., & Freire, D. M. (2011). Production and use of lipases in bioenergy: a review from the feedstocks to biodiesel production. Enzyme Research, 2011, 16.Google Scholar
  247. 247.
    Tan, T., Lu, J., Nie, K., Deng, L., & Wang, F. (2010). Biodiesel production with immobilized lipase: a review. Biotechnology Advances, 28, 628–634.Google Scholar
  248. 248.
    Bisen, P. S., Sanodiya, B. S., Thakur, G. S., Baghel, R. K., & Prasad, G. B. (2010). Biodiesel production with special emphasis on lipase-catalyzed transesterification. Biotechnology Letters, 32, 1019–1030.Google Scholar
  249. 249.
    Wang, X., Liu, X., Yan, X., Zhao, P., Ding, Y., et al. (2011). Enzyme-nanoporous gold biocomposite: excellent biocatalyst with improved biocatalytic performance and stability. PLoS One, 6, e24207.Google Scholar
  250. 250.
    Tzialla, A. A., Pavlidis, I. V., Felicissimo, M. P., Rudolf, P., Gournis, D., et al. (2010). Lipase immobilization on smectite nanoclays: characterization and application to the epoxidation of alpha-pinene. Bioresource Technology, 101, 1587–1594.Google Scholar
  251. 251.
    Rao, A., Bankar, A., Shinde, A., Ravi Kumar, A., Gosavi, S., et al. (2011). Phyto-inspired silica nanowires: characterization and application in lipase immobilization. ACS Applied Materials & Interfaces, 4, 871–877.Google Scholar
  252. 252.
    Baldessari, A., & Iglesias, L. E. (2012). Lipases in green chemistry: acylation and alcoholysis on steroids and nucleosides. Methods in Molecular Biology, 861, 457–469.Google Scholar
  253. 253.
    Gross, R. A., Kalra, B., & Kumar, A. (2001). Polyester and polycarbonate synthesis by in vitro enzyme catalysis. Applied Microbiology and Biotechnology, 55, 655–660.Google Scholar
  254. 254.
    Kim, D. Y., & Dordick, J. S. (2001). Combinatorial array-based enzymatic polyester synthesis. Biotechnology and Bioengineering, 76, 200–206.Google Scholar
  255. 255.
    Wang, H. Y., Zhou, Y. J., Wang, Z., Wang, N., Li, K., et al. (2011). Enzyme-catalyzed synthesis of a novel thermosensitive polyester with pendant ketoprofen. Macromolecular Bioscience, 11, 595–599.Google Scholar
  256. 256.
    Brust, B., Lecoufle, M., Tuaillon, E., Dedieu, L., Canaan, S., et al. (2011). Mycobacterium tuberculosis lipolytic enzymes as potential biomarkers for the diagnosis of active tuberculosis. PLoS One, 6, e25078.Google Scholar
  257. 257.
    Pinijsuwan, S., Shipovskov, S., Surareungchai, W., Ferapontova, E. E., & Gothelf, K. V. (2011). Development of a lipase-based optical assay for detection of DNA. Organic and Biomolecular Chemistry, 9, 6352–6356.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Chemical and BiotechnologySASTRA UniversityThanjavurIndia

Personalised recommendations