Advertisement

Applied Biochemistry and Biotechnology

, Volume 168, Issue 5, pp 980–990 | Cite as

Detection and Confirmation of Alkaloids in Leaves of Justicia adhatoda and Bioinformatics Approach to Elicit Its Anti-tuberculosis Activity

  • Deepak Kumar Jha
  • Likun Panda
  • P. Lavanya
  • Sudha Ramaiah
  • Anand Anbarasu
Article

Abstract

The extraction and determination of alkaloids was performed and confirmed by phytochemical analysis. Six different quinazoline alkaloids (vasicoline, vasicolinone, vasicinone, vasicine, adhatodine and anisotine) were found in the leaf of Justicia adhatoda (J. adhatoda). The presence of the peaks obtained through HPLC indicated the diverse nature of alkaloid present in the leaf. The enzyme β-ketoacyl-acyl-carrier protein synthase III that catalyses the initial step of fatty acid biosynthesis (FabH) via a type II fatty acid synthase has unique structural features and universal occurrence in Mycobacterium tuberculosis (M. tuberculosis). Thus, it was considered as a target for designing of anti-tuberculosis compounds. Docking simulations were conducted on the above alkaloids derived from J. adhatoda. The combination of docking/scoring provided interesting insights into the binding of different inhibitors and their activity. These results will be useful for designing inhibitors for M. tuberculosis and also will be a good starting point for natural plant-based pharmaceutical chemistry.

Keywords

J. adhatoda Tuberculosis mtFabH Docking Vasicoline 

Notes

Acknowledgment

Dr. Anand Anbarasu gratefully acknowledges the Indian council of Medical Research (ICMR), Government of India Agency for the research grant IRIS ID: 2011-03260. P. Lavanya thanks ICMR for the Research fellowship from the grant IRIS ID: 2011-03260. The authors would also like to thank the management of VIT University for providing the necessary facilities to carry out this research project.

Conflict of Interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    World Health Organization (2010). The world health report 2010/2011. Geneva, Switzerland.Google Scholar
  2. 2.
    Jarlier, V., & Nikaido, H. (1994). FEMS Microbiology Letters, 123, 11–18.CrossRefGoogle Scholar
  3. 3.
    Nikaido, H., & Jarlier, V. (1991). Research in Microbiology, 142, 437–443.CrossRefGoogle Scholar
  4. 4.
    Smith, S., Witkowski, A., & Joshi, A. K. (2003). Progress in Lipid Research, 42, 289–317.CrossRefGoogle Scholar
  5. 5.
    Kremer, L., Nampoothiri, K. M., Lesjean, S., Dover, L. G., Graham, S., Betts, J., et al. (2001). Journal of Biological Chemistry, 276, 27967–27974.CrossRefGoogle Scholar
  6. 6.
    Bhatt, A., Molle, V., Besra, G. S., Jacobs, W. R., & Kremer, L. (2007). Molecular Microbiology, 64(6), 1442–1454.CrossRefGoogle Scholar
  7. 7.
    Kaye, K., & Frieden, T. R. (1996). Epidemiology Reviews, 18, 52–63.CrossRefGoogle Scholar
  8. 8.
    Centers for Disease Control and Prevention (2006). Morbidity mortality weekly report 55, 301–305.Google Scholar
  9. 9.
    Kremer, L., & Besra, G. S. (1999). In Recent Research and Development of Antimicrobial Agents and Chemotherapy, 3, 453–470.Google Scholar
  10. 10.
    Claeson, U. P., & Malmfors, T. (2000). Journal of Ethnopharmacology, 72, 01–20.CrossRefGoogle Scholar
  11. 11.
    Dhuley, J. N. (1999). Journal of Ethnopharmacology, 67, 361–365.CrossRefGoogle Scholar
  12. 12.
    Chatterjee, S. (1999). Indian Journal of Physiology and Pharmacology, 43, 486–490.Google Scholar
  13. 13.
    Mahato, R. B., & Chaudhary, R. P. (2005). Scientific World, 3, 26–31.Google Scholar
  14. 14.
    Singh, A. (1997). Theraputic monograph—Adhatoda vasica (pp. 25–45). Mohali: Ind-swift Ltd.Google Scholar
  15. 15.
    Srivastava, S., Verma, R. K., Gupta, M. M., Singh, S. C., & Kumar, S. (2001). Journal of Liquid Chromatography & Related Technologies, 24(2), 153–159.CrossRefGoogle Scholar
  16. 16.
    Bhide, M. B., Naik, P. Y., & Ghooi, R. B. (1976). Bulletin of Haffkine Institute, 4, 43–50.Google Scholar
  17. 17.
    Bhide, M. B., Naik, P. Y., Ghooi, R. B., Mahajani, S. S., & Joshi, R. S. (1974). Bulletin of Haffkine Institute, 2, 6–11.Google Scholar
  18. 18.
    Kokate, C. K., Purohit, A. P., & Gokhale, S. B. (2003). Pharmacognosys (2nd ed., pp. 522–523). Pune: Nirali prakashan.Google Scholar
  19. 19.
    Harborne, J. B., & Williams, C. A. (2000). Phytochemistry, 55, 481–485.CrossRefGoogle Scholar
  20. 20.
    Evans, W. C. (1997). Trease and evans pharmacognosy (14th ed.). Singapore: Harcourt Brace and Company. Asia Pvt Ltd.Google Scholar
  21. 21.
    Wagner, H. (1993). Pharmazeutische biologie, 5th edn. AUFI.15 BN 3-437-20 498-X. Gustav fisher Vwelag, Stuttgart, Germany.Google Scholar
  22. 22.
    Suchomelová, J., Bochořáková, H., Paulová, H., Musil, P., & Táborská, E. (2007). Journal of Pharmaceutical and Biomedical Analysis, 44, 283–287.CrossRefGoogle Scholar
  23. 23.
    Brown, A. K., Sridharan, S., Kremer, L., Lindenberg, S., & Dover, L. G. (2005). Journal of Biological Chemistry, 280, 32539–32547.CrossRefGoogle Scholar
  24. 24.
    Choi, K. H., Kremer, L., Besra, G. S., & Rock, C. O. (2000). Journal of Biological Chemistry, 275, 28201–28207.Google Scholar
  25. 25.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., et al. (2000). Nucleic Acid Research, 28, 235–242.CrossRefGoogle Scholar
  26. 26.
    Wang, Y., Xiao, J., Suzek, T. O., Zhang, J., Wang, J., & Bryant, S. H. (2009). Nucleic Acid Research, 37, W623–W633.CrossRefGoogle Scholar
  27. 27.
    Gasteiger, J., Rudolph, C., & Sadowski, J. (1990). Tetrahedron Computer Methodology, 3(6), 537–547. Part3.CrossRefGoogle Scholar
  28. 28.
    Riede, H. L. (2009). Lancet, 373(9670), 1148–1149.CrossRefGoogle Scholar
  29. 29.
    Yendapally, R., & Lee, R. E. (2008). Bioorganic Medicinal Chemistry Letters, 18(5), 1607–1611.CrossRefGoogle Scholar
  30. 30.
    Hong Kong Chest Service, Medical Research Council. (1981). Lancet, 1(8213), 171–174.Google Scholar
  31. 31.
    Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. (2005). Nucleic Acids Research, 33, W363–W367.CrossRefGoogle Scholar
  32. 32.
    Duhovny, D., Nussinov, R., & Wolfson, H. (2002). Lecture Notes in Computer Science, 2452, 185–200. Springer Verlag.CrossRefGoogle Scholar
  33. 33.
    Mustard, D., & Ritchie, D. W. (2005). Proteins: Structure, Function and Bioinformatics, 60(2), 269–274.CrossRefGoogle Scholar
  34. 34.
    Ritchie, D. W. (2003). Proteins: Structure, Function and Genetics, 52, 98–106.CrossRefGoogle Scholar
  35. 35.
    Ritchie, D. W., & Kemp, G. J. L. (2000). Proteins: Structure, Function and Genetics, 39, 178–194.CrossRefGoogle Scholar
  36. 36.
    Sanner, M. F. (1999). Journal of Molecular Graphics and Modelling, 17, 57–61.Google Scholar
  37. 37.
    Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., et al. (1998). Journal of Computational Chemistry, 19, 1639–1662.CrossRefGoogle Scholar
  38. 38.
    Solis, F. J., & Wets, R. J. B. (1981). Mathematics of Operations Research, 6, 19–30.CrossRefGoogle Scholar
  39. 39.
    Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. C. (1997). Advanced Drug Delivery Reviews, 46(1–3), 3–26.CrossRefGoogle Scholar
  40. 40.
    Tetko, I. V., Gasteiger, J., Todeschini, R., Mauri, A., Livingstone, D., Ertl, P., et al. (2005). Journal of Computer Aided Molecular Design, 19, 453–463.CrossRefGoogle Scholar
  41. 41.
    Jarrahpour, A., Fathi, J., Mimouni, M., Hadda, B. T., Sheikh, J., Chohan, Z. H., et al. (2011). Medicinal Chemistry Research, 19(7), 1–7.Google Scholar
  42. 42.
    Ghose, A. k., Viswanadhan, V. N., & Wendoloski, J. J. (1999). Journal of Combinatorial Chemistry, 1(1), 55–68.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Deepak Kumar Jha
    • 1
  • Likun Panda
    • 1
  • P. Lavanya
    • 1
  • Sudha Ramaiah
    • 1
  • Anand Anbarasu
    • 1
  1. 1.Medical and Biological computing laboratory, School of Biosciences and TechnologyVIT UniversityVelloreIndia

Personalised recommendations