Applied Biochemistry and Biotechnology

, Volume 168, Issue 4, pp 899–909 | Cite as

A Novel Alkaliphilic Xylanase from the Newly Isolated Mesophilic Bacillus sp. MX47: Production, Purification, and Characterization

  • Won-Jae Chi
  • Da Yeon Park
  • Yong-Keun Chang
  • Soon-Kwang Hong
Article

Abstract

A newly isolated bacterial strain, Bacillus sp. MX47, was actively producing extracellular xylanase only in xylan-containing medium. The xylanase was purified from the culture broth by two chromatographic steps. The xylanase had an apparent molecular weight of 26.4 kDa with an NH2-terminal sequence (Gln-Gly-Gly-Asn-Phe) distinct from that of reported proteins, implying it is a novel enzyme. The optimum pH and temperature for xylanase activity were 8.0 and 40 °C, respectively. The enzyme activity was severely inhibited by many divalent metal ions and EDTA at 5 mM. The xylanase was highly specific to beechwood and oat spelt xylan, however, not active on carboxymethyl cellulose (CMC), avicel, pectin, and starch. Analysis of the xylan hydrolysis products by Bacillus sp. MX47 xylanase indicated that it is an endo-β-1,4-xylanase. It hydrolyzed xylan to xylobiose as the end product. The Km and Vmax values toward beechwood xylan were 3.24 mg ml−1 and 58.21 μmol min−1 mg−1 protein, respectively.

Keywords

Xylanase Endo-β-1,4-xylanase Xylobiose Bacillus sp. Purification Chromatography 

Supplementary material

12010_2012_9828_MOESM1_ESM.doc (301 kb)
ESM 1(DOC 301 kb)

References

  1. 1.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, A., Miller, W., & Lipman, D. J. (1997). Nucleic Acids Research, 25, 3389–3402.CrossRefGoogle Scholar
  2. 2.
    Bajpai, P. (1997). Advances in Applied Microbiology, 43, 141–194.CrossRefGoogle Scholar
  3. 3.
    Basu, S., Roy, A., Ghosh, A., Bera, A., Chattopadhyay, D., & Chakrabarti, K. (2011). Biodegradation, 22, 153–161.CrossRefGoogle Scholar
  4. 4.
    Bernier, R., Desrochers, M., Jurasek, L., & Paice, M. G. (1983). Applied and Environmental Microbiology, 46, 511–514.Google Scholar
  5. 5.
    Bustos-Jaimes, I., Mora-Lugo, R., Calcagno, M. L., & Farrés, A. (2010). Biochimica et Biophysica Acta, 1804, 2222–2227.CrossRefGoogle Scholar
  6. 6.
    Chun, J., Lee, J. H., Jung, Y. Y., Kim, M. J., Kim, S. I., Kim, B. K., & Lim, Y. W. (2007). International Journal of Systematic Evolution and Microbiololgy, 57, 2259–2261.CrossRefGoogle Scholar
  7. 7.
    Collins, T., Gerday, C., & Feller, G. (2005). FEMS Microbiology Reviews, 29, 3–23.CrossRefGoogle Scholar
  8. 8.
    Felsenstein, J. (1993). PHYLIP (phylogeny inference package), version 3.5c. Distributed by the author. Seattle: Department of Genome Sciences, University of Washington.Google Scholar
  9. 9.
    Galkiewicz, J. P., & Kellogg, C. A. (2008). Applied and Environmental Microbiology, 74, 7828–7831.CrossRefGoogle Scholar
  10. 10.
    Gallardo, O., Diaz, P., & Pastor, F. I. (2004). Current Microbiology, 48, 276–279.CrossRefGoogle Scholar
  11. 11.
    Ghasemi, S., Ahmadian, G., Sadeghi, M., Zeigler, D. R., Rahimian, H., Ghandili, S., Naghibzadeh, N., & Dehestani, A. (2011). Enzyme and Microbial Technology, 48, 225–231.CrossRefGoogle Scholar
  12. 12.
    Hall, T. A. (1999). Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  13. 13.
    Ibrahim, K. S., Muniyandi, J., & Karutha, P. S. (2011). Journal of Microbiology and Biotechnology, 21, 20–27.CrossRefGoogle Scholar
  14. 14.
    Kamble, R. D., & Jadhav, A. R. (2012). International Journal of Microbiology. doi:10.1155/2012/683193.
  15. 15.
    Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. 16.
    Kluge, A. G., & Farris, F. S. (1969). Systematic Zoology, 18, 1–32.CrossRefGoogle Scholar
  17. 17.
    Knight, B. C., & Proom, H. (1950). Journal of General Microbiology, 4, 508–538.CrossRefGoogle Scholar
  18. 18.
    Laemmli, U. K. (1970). Nature, 30, 545–550.Google Scholar
  19. 19.
    Lineweaver, H., & Burk, D. (1934). Journal of the American Chemistry Society, 56, 658–666.CrossRefGoogle Scholar
  20. 20.
    Miller, G. L. (1959). Anaytical Biochemistry, 13, 426–428.Google Scholar
  21. 21.
    Nagar, S., Gupta, V. K., Kumar, D., Kumar, L., & Kuhad, R. C. (2010). Journal of Industrial Microbiology and Biotechnology, 37, 71–83.CrossRefGoogle Scholar
  22. 22.
    Ratanakhanokchaim, K., Kyu, K. L., & Tanticharoen, M. (1999). Applied and Environmental Microbiology, 65, 694–697.Google Scholar
  23. 23.
    Sa-Pereira, P., Costa-Ferreira, M., & Aires-Barros, M. R. (2002). Journal of Biotechnology, 94, 265–275.CrossRefGoogle Scholar
  24. 24.
    Saitou, N., & Nei, M. (1987). Molecular Biology and Evolution, 4, 406–425.Google Scholar
  25. 25.
    Satomi, M., La Duc, M. T., & Venkateswaran, K. (2006). International Journal of Systematic and Evolutionary Microbiology, 56, 1735–1740.CrossRefGoogle Scholar
  26. 26.
    Segel, I. H. (1976). Enzyme kinetics. In Biochemical calculations. How to solve mathematical problems in general biochemistry (2nd ed., pp. 214–229). New York: John Wiley and Sons.Google Scholar
  27. 27.
    Shivaji, S., Chaturvedi, P., Suresh, K., Reddy, G. S. N., Dutt, C. B. S., Wainwright, M., Narlikar, J. V., & Bhargava, P. M. (2006). International Journal of Systematic and Evolutionary Microbiology, 56, 1465–1473.CrossRefGoogle Scholar
  28. 28.
    Su, F., Hua, D., Zhang, Z., Wang, X., Tang, H., Tao, F., Tai, C., Wu, Q., Wu, G., & Xu, P. (2011). Journal of Bacteriology, 193, 6400–6401.CrossRefGoogle Scholar
  29. 29.
    Subramaniyan, S. (2012). Applied Biochemistry and Biotechnology, 166, 1831–1842.CrossRefGoogle Scholar
  30. 30.
    Thomson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Nucleic Acids Research, 22, 4673–4680.CrossRefGoogle Scholar
  31. 31.
    Wang, J., Zhang, W. W., Liu, J. N., Cao, Y. L., Bai, X. T., Gong, Y. S., Cen, P. L., & Yang, M. M. (2010). Molecular Biology Reports, 37, 3297–3302.CrossRefGoogle Scholar
  32. 32.
    Wu, Q., Li, C., Li, C., Chen, H., & Shuliang, L. (2010). Applied Biochemistry and Biotechnology, 160, 129–139.CrossRefGoogle Scholar
  33. 33.
    Yin, L. J., Lin, H. H., Chiang, Y. I., & Jiang, S. T. (2010). Journal of Agricultural and Food Chemistry, 58, 557–562.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Won-Jae Chi
    • 1
  • Da Yeon Park
    • 1
  • Yong-Keun Chang
    • 2
  • Soon-Kwang Hong
    • 1
  1. 1.Department of Biological ScienceMyongji UniversityYonginSouth Korea
  2. 2.Department of Chemical and Biomolecular EngineeringKorea Advanced Institute of Science and TechnologyDaejeonSouth Korea

Personalised recommendations