Applied Biochemistry and Biotechnology

, Volume 168, Issue 4, pp 864–876 | Cite as

Laccase-Mediated Transformations of Endocrine Disrupting Chemicals Abolish Binding Affinities to Estrogen Receptors and Their Estrogenic Activity in Zebrafish

  • Cristina Torres-Duarte
  • María Teresa Viana
  • Rafael Vazquez-Duhalt
Article

Abstract

Endocrine disrupting chemicals (EDCs) are known to mainly affect aquatic organisms, producing negative effects in aquaculture. Transformation of the estrogenic compounds 17β-estradiol (E2), bisphenol-A (BPA), nonylphenol (NP), and triclosan (TCS) by laccase of Coriolopsis gallica was studied. Laccase is able to efficiently transform them into polymers. The estrogenic activity of the EDCs and their laccase transformation products was evaluated in vitro as their affinity for the human estrogen receptor alpha (hERα) and for the ligand binding domain of zebrafish (Danio rerio) estrogen receptor alpha (zfERαLBD). E2, BPA, NP, and TCS showed higher affinity for the zfERαLBD than for hERα. After laccase treatment, no affinity was found, except a marginal affinity of E2 products for the zfERαLBD. Endocrine disruption studies in vivo on zebrafish were performed using the induction of vitellogenin 1 as a biomarker (VTG1 mRNA levels). The use of enzymatic bioreactors, containing immobilized laccase, efficiently eliminates the endocrine activity of BPA and TCS, and significantly reduces the effects of E2. The potential use of enzymatic reactors to eliminate the endocrine activity of EDCs in supply water for aquaculture is discussed.

Keywords

Bisphenol-A Endocrine disruption Estrogen receptor Zebrafish Laccase Nonylphenol Triclosan Immobilized laccase Vitellogenin 

References

  1. 1.
    Johnson, A., & Jürgens, M. (2003). Pure and Applied Chemistry, 75, 1895–1904.CrossRefGoogle Scholar
  2. 2.
    Thomas, P., Alyea, R., Pang, Y., Peyton, C., Dong, J., & Berg, A. H. (2010). Steroids, 75, 595–602.CrossRefGoogle Scholar
  3. 3.
    Milnes, M. R., Bermudez, D. S., Bryan, T. A., Edwards, T. M., Gunderson, M. P., Larkin, I. L. V., Moore, B. C., & Guillette, J. L. J. (2006). Environmental Research, 100, 3–17.CrossRefGoogle Scholar
  4. 4.
    Sanderson, J.T. (2006) Toxicological Sciences, 94, 3–21.Google Scholar
  5. 5.
    Gutendorf, B., & Westendorf, J. (2001). Toxicology, 166, 79–89.CrossRefGoogle Scholar
  6. 6.
    Pillon, A., Boussioux, A.-M., Escande, A., Aït-Aïssa, S., Gomez, E., Fenet, H., Ruff, M., Moras, D., Vignon, F., Duchesne, M.-J., Casellas, C., Nicolas, J.-C., & Balaguer, P. (2005). Environmental Health Perspectives, 113, 278–284.CrossRefGoogle Scholar
  7. 7.
    Kausch, U., Alberti, M., Haindl, S., Budczies, J., & Hock, B. (2008). Environmental Toxicology, 23, 15–24.CrossRefGoogle Scholar
  8. 8.
    Vandenberg, L. N., Maffini, M. V., Sonnenschein, C., Rubin, B. S., & Soto, A. M. (2009). Endocrine Reviews, 30, 75–95.CrossRefGoogle Scholar
  9. 9.
    Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., & Lester, J. N. (2008). Environment International, 34, 1033–1049.CrossRefGoogle Scholar
  10. 10.
    Vazquez-Duhalt, R., Marquez-Rocha, F., Ponce, E., Licea, A. F., & Viana, M. T. (2006). Applied Ecology and Environmental Research, 4, 1–25.Google Scholar
  11. 11.
    Dann, A. B., & Hontela, A. (2011). Journal of Applied Toxicology, 31, 285–311.CrossRefGoogle Scholar
  12. 12.
    Oberdörster, E., & Cheek, A. O. (2001). Environmental Toxicology and Chemistry, 20, 23–36.CrossRefGoogle Scholar
  13. 13.
    Schultz, T. W., Sinks, G. D., & Cronin, M. T. D. (2002). Environmental Toxicology, 17, 14–23.CrossRefGoogle Scholar
  14. 14.
    Giesy, J. P., & Snyder, E. M. (1998). In R. J. Kendall, R. L. Dickerson, J. P. Giesy, & W. A. Suk (Eds.), Principles and processes for evaluating endocrine disruption in wildlife (pp. 155–237). Pensacola: SETAC.Google Scholar
  15. 15.
    Imai, S., Shiraishi, A., Gamo, K., Watanabe, I., Okuhata, H., Miyasaka, H., Ikeda, K., Bamba, T., & Hirata, K. (2007). Journal of Biosciences and Bioengineering, 103, 420–426.CrossRefGoogle Scholar
  16. 16.
    Lee, B.-C., Kamata, M., Akatsuka, Y., Takeda, M., Ohno, K., Kamei, T., & Magara, Y. (2004). Water Research, 38, 733–739.CrossRefGoogle Scholar
  17. 17.
    Liu, Z.-H., Kanjo, Y., & Mizutani, S. (2009). Science of the Total Environment, 407, 731–748.CrossRefGoogle Scholar
  18. 18.
    Vidal, G., Becerra, J., Hernández, V., Decap, J., & Xavier, C. R. (2007). Journal of Biosciences and Bioengineering, 104, 476–480.CrossRefGoogle Scholar
  19. 19.
    Cabana, H., Jones, J. P., & Agathos, S. N. (2007). Engineering in Life Sciences, 7, 429–456.CrossRefGoogle Scholar
  20. 20.
    Tsutsumi, Y., Haneda, T., & Nishida, T. (2001). Chemosphere, 42, 271–276.CrossRefGoogle Scholar
  21. 21.
    Pointing, S. B. (2001). Applied Microbiology and Biotechnology, 57, 20–33.CrossRefGoogle Scholar
  22. 22.
    Tinoco, R., Pickard, M. A., & Vazquez-Duhalt, R. (2001). Letters in Applied Microbiology, 32, 331–335.CrossRefGoogle Scholar
  23. 23.
    Vandertol-Vanier, H. A., Vazquez-Duhalt, R., Tinoco, R., & Pickard, M. A. (2002). Journal of Industrial Microbiology and Biotechnology, 29, 214–220.CrossRefGoogle Scholar
  24. 24.
    Chefetz, B., Chen, Y., & Hadar, Y. (1998). Applied and Environmental Microbiology, 64, 3175–3179.Google Scholar
  25. 25.
    Gurer-Orhan, H., Kool, J., Vermeulen, N. P. E., & Meerman, J. H. N. (2005). International Journal of Environmental Analytical Chemistry, 85, 149–161.CrossRefGoogle Scholar
  26. 26.
    Bakker, M., van de Velde, F., van Rantwijk, F., & Sheldon, R. A. (2000). Biotechnology and Bioengineering, 70, 342–348.CrossRefGoogle Scholar
  27. 27.
    Camarero, S., Ibarra, D., Martinez, M. J., & Martinez, A. T. (2005). Applied and Environmental Microbiology, 71, 1775–1784.CrossRefGoogle Scholar
  28. 28.
    Menuet, A., Pellegrini, E., Anglade, I., Blaise, O., Laudet, V., Kah, O., & Pakdel, F. (2002). Biology of Reproduction, 66, 1881–1892.CrossRefGoogle Scholar
  29. 29.
    Eiler, S., Gangloff, M., Duclaud, S., Moras, D., & Ruff, M. (2001). Protein Expression and Purification, 22, 165–173.CrossRefGoogle Scholar
  30. 30.
    De la Mora, E., Lovett, J. E., Blanford, C. F., Garman, E. F., Valderrama, B., & Rudino-Pinera, E. (2012). Acta Crystallographica Section D, 68, 564–577.Google Scholar
  31. 31.
    Pickard, M. A., Roman, R., Tinoco, R., & Vazquez-Duhalt, R. (1999). Applied and Environmental Microbiology, 65, 3805–3809.Google Scholar
  32. 32.
    Reyes, P., Pickard, M. A., & Vazquez-Duhalt, R. (1999). Biotechnology Letters, 21, 875–880.CrossRefGoogle Scholar
  33. 33.
    Torres-Duarte, C., Roman, R., Tinoco, R., & Vazquez-Duhalt, R. (2009). Chemosphere, 77, 687–692.CrossRefGoogle Scholar
  34. 34.
    Auriol, M., Filali-Meknassi, Y., Adams, C. D., Tyagi, R. D., Noguerol, T.-N., & Piña, B. (2008). Chemosphere, 70, 445–452.CrossRefGoogle Scholar
  35. 35.
    Fukuda, T., Uchida, H., Suzuki, M., Miyamoto, H., Morinaga, H., Nawata, H., & Uwajima, T. (2004). Journal of Chemical Technology and Biotechnology, 79, 1212–1218.CrossRefGoogle Scholar
  36. 36.
    Cabana, H., Jones, J. P., & Agathos, S. N. (2007). Journal of Biotechnology, 132, 23–31.CrossRefGoogle Scholar
  37. 37.
    Levin, R. D., & Lias, S. G. (1982). Ionization potential and appearance potential measurements, 1971–1981. Washington, D. C.: U.S. Dept. of Commerce, National Bureau of Standards.Google Scholar
  38. 38.
    Gianfreda, L., Xu, F., & Bollag, J.-M. (1999). Bioremediation Journal, 3, 1–26.CrossRefGoogle Scholar
  39. 39.
    Nicotra, S., Intra, A., Ottolina, G., Riva, S., & Danieli, B. (2004). Tetrahedron-Asymmetry, 15, 2927–2931.CrossRefGoogle Scholar
  40. 40.
    Uchida, H., Fukuda, T., Miyamoto, H., Kawabata, T., Suzuki, M., & Uwajima, T. (2001). Biochemical and Biophysical Research Communications, 287, 355–358.CrossRefGoogle Scholar
  41. 41.
    Matthews, J., Celius, T., Halgren, R., & Zacharewski, T. (2000). The Journal of Steroid Biochemistry and Molecular Biology, 74, 223–234.CrossRefGoogle Scholar
  42. 42.
    Nakai, M. (2003). MEDAKA: development of test methods and suitability of medaka as test organism for detection of endocrine disrupting chemicals. Ministry of the Environment, Japan and Chemicals Evaluation and Research Institute, Japan, pp. 21–26.Google Scholar
  43. 43.
    Olsen, C. M., Meussen-Elholm, E. T. M., Hongslo, J. K., Stenersen, J., & Tollefsen, K.-E. (2005). Comparative Biochemistry and Physiology. Part C: Toxicology and Pharmacology, 141, 267–274.CrossRefGoogle Scholar
  44. 44.
    Parker, G. J., Law, T. L., Lenoch, F. J., & Bolger, R. E. (2000). Journal of Biomolecular Screening, 5, 77–88.CrossRefGoogle Scholar
  45. 45.
    Gale, W. L., Patiño, R., & Maule, A. G. (2004). General and Comparative Endocrinology, 136, 338–345.CrossRefGoogle Scholar
  46. 46.
    Kloas, W., Schrag, B., Ehnes, C., & Segner, H. (2000). General and Comparative Endocrinology, 119, 287–299.CrossRefGoogle Scholar
  47. 47.
    Passos, A. L. S., Pinto, P. I. S., Power, D. M., & Canario, A. V. M. (2009). Ecotoxicology and Environmental Safety, 72, 1529–1537.CrossRefGoogle Scholar
  48. 48.
    Rider, C. V., Hartig, P. C., Cardon, M. C., & Wilson, V. S. (2009). Environmental Toxicology and Chemistry, 28, 2175–2181.CrossRefGoogle Scholar
  49. 49.
    Costache, A. D., Pullela, P. K., Kasha, P., Tomasiewicz, H., & Sem, D. S. (2005). Molecular Endocrinology, 19, 2979–2990.CrossRefGoogle Scholar
  50. 50.
    Katagi, T. (2010). Reviews of Environmental Contamination and Toxicology, 204, 1–132.CrossRefGoogle Scholar
  51. 51.
    von Hofsten, J., & Olsson, P.-E. (2005). Reproductive Biology and Endocrinology, 3, 63–73.CrossRefGoogle Scholar
  52. 52.
    Kidd, K. A., Blanchfield, P. J., Mills, K. H., Palace, V. P., Evans, R. E., Lazorchak, J. M., & Flick, R. W. (2007). Proceedings of the National Academy of Sciences, 104, 8897–8901.CrossRefGoogle Scholar
  53. 53.
    Tamagawa, Y., Hirai, H., Kawai, S., & Nishida, T. (2005). FEMS Microbiology Letters, 244, 93–98.CrossRefGoogle Scholar
  54. 54.
    Tamagawa, Y., Yamaki, R., Hirai, H., Kawai, S., & Nishida, T. (2006). Chemosphere, 65, 97–101.CrossRefGoogle Scholar
  55. 55.
    Ishibashi, H., Matsumura, N., Hirano, M., Matsuoka, M., Shiratsuchi, H., Ishibashi, Y., Takao, Y., & Arizono, K. (2004). Aquatic Toxicology, 67, 167–179.CrossRefGoogle Scholar
  56. 56.
    Sun, L., Wen, L., Shao, X., Qian, H., Jin, Y., Liu, W., & Fu, Z. (2010). Chemosphere, 78, 793–799.CrossRefGoogle Scholar
  57. 57.
    Palumbo, A. J., Denison, M. S., Doroshov, S. I., & Tjeerdema, R. S. (2009). Environmental Toxicology and Chemistry, 28, 1749–1755.CrossRefGoogle Scholar
  58. 58.
    Shanle, E. K., & Xu, W. (2011). Chemical Research in Toxicology, 24, 6–19.CrossRefGoogle Scholar
  59. 59.
    Diano, N., Grano, V., Fraconte, L., Caputo, P., Ricupito, A., Attanasio, A., Bianco, M., Bencivenga, U., Rossi, S., Manco, I., Mita, L., Del Pozzo, G., & Mita, D. G. (2007). Applied Catalysis B: Environmental, 69, 252–261.CrossRefGoogle Scholar
  60. 60.
    Cabana, H., Alexandre, C., Agathos, S. N., & Jones, J. P. (2009). Bioresource Technology, 100, 3447–3458.CrossRefGoogle Scholar
  61. 61.
    Nicolucci, C., Rossi, S., Menale, C., Godjevargova, T., Ivanov, Y., Bianco, M., Mita, L., Bencivenga, U., Mita, D., & Diano, N. (2011). Biodegradation, 22, 673–683.CrossRefGoogle Scholar
  62. 62.
    Li, X., Ying, G.-G., Su, H.-C., Yang, X.-B., & Wang, L. (2010). Environment International, 36, 557–562.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Cristina Torres-Duarte
    • 1
  • María Teresa Viana
    • 2
  • Rafael Vazquez-Duhalt
    • 1
  1. 1.Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico
  2. 2.Instituto de Investigaciones OceanológicasUniversidad Autónoma de Baja CaliforniaEnsenadaMexico

Personalised recommendations