Advertisement

Applied Biochemistry and Biotechnology

, Volume 168, Issue 4, pp 834–850 | Cite as

Proteomic Analysis for Low and High Nitrogen-Responsive Proteins in the Leaves of Rice Genotypes Grown at Three Nitrogen Levels

  • Khalid Rehman Hakeem
  • Ruby Chandna
  • Altaf Ahmad
  • Mohd. Irfan Qureshi
  • Muhammad Iqbal
Article

Abstract

Nitrogen (N) is an essential nutrient for plants. Increase in crop production is associated with increase in N fertilizers. Excessive use of N fertilizers and the low nitrogen utilization efficiency by crop plants is a major cause for environmental damage. Therefore, to reduce the N-fertilizer pollution, there is an urgent need to improve nitrogen use efficiency. Identification and/or development of genotypes which can grow and yield well at low nitrogen levels may provide a solution. Understanding the molecular mechanism of differential nitrogen use efficiency of the genotypes may provide some clues. Keeping the above facts in mind, in this study we have identified the high N-responsive and low N-responsive contrasting rice genotypes, out of 20 genotypes that were grown at low (1 mM), moderate (10 mM), and high (25 mM) levels of N (KNO3). Proteome analysis of leaves revealed that the proteins involved in the energy production/regulation and metabolism in plant leaf tissues are differentially expressed under N treatments. Moreover, some disease-resistant and stress-induced proteins were found to be overexpressed at high levels of N. The present study could be useful in identifying proteins responding to different levels of nitrogen fertilization, which may open new avenues for a better understanding of N use efficiency, and for developing new strategies to enhance N efficiency in cereal crops.

Keywords

2D Electrophoresis Mass spectrometry N-use efficiency Proteomics Rice genotypes 

Notes

Conflict of Interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Ahmad, A., Khan, I., Anjum, N. A., Abrol, Y. P., & Iqbal, M. (2005). Role of sulphate transporter systems in sulphur efficiency of mustard genotypes. Plant Science, 169, 842–846.CrossRefGoogle Scholar
  2. 2.
    Ahmad, A., Khan, I., Anjum, N. A., Abrol, Y. P., & Iqbal, M. (2008). Genotypic variation of nitrogen use efficiency in Indian mustard. Environ Pollut, 154, 462–466.CrossRefGoogle Scholar
  3. 3.
    Anjana, U. S., Iqbal, M., & Abrol, Y. P. (2007). Are nitrate concentrations in leafy vegetables within safe limits? Current Science, 92, 355–360.Google Scholar
  4. 4.
    Bahrman, N., Gouis, J. L., Negroni, L., Amilhat, L., Leroy, P., Lainé, A. L., & Jaminon, O. (2004). Differential protein expression assessed by two-dimensional gel electrophoresis for two wheat varieties grown at four nitrogen levels. Proteomics, 4, 709–719.CrossRefGoogle Scholar
  5. 5.
    Bates BZ, Kundzewicz SW, Palutik J (2008) eds. Observed and projected changes in climate as they relate to water. In: Climate change and water. IPCC Secretariat, Geneva.Google Scholar
  6. 6.
    Beatty, P. H., Shrawat, A. K., Carroll, R., Zhu, T., & Good, A. G. (2009). Transcriptome analysis of nitrogen-efficient rice over-expressing alanine aminotransferase. Plant Biotechnol J, 7, 562–576.CrossRefGoogle Scholar
  7. 7.
    Bevan, M., Bancroft, I., Bent, E., Love, K., Goodman, H., Dean, C., Bergkamp, R., Dirske, W., Van-Staveren, M., & Stiekema, W. (1998). Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana. Nature, 391, 485–488.CrossRefGoogle Scholar
  8. 8.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  9. 9.
    Bradley, R. S., & Kindred, D. R. (2009). Analysing nitrogen responses of cereals to prioritize routes to the improvement of nitrogen use efficiency. Journal of Experimental Botany, 60, 1939–1951.CrossRefGoogle Scholar
  10. 10.
    Britto, D. T., & Kronzucker, H. J. (2004). Bioengineering nitrogen acquisition in rice: can novel initiatives in rice genomics and physiology contribute to global food security? Bioessays, 26, 683–692.CrossRefGoogle Scholar
  11. 11.
    Cai, H., Zhou, Y., Xiao, J., Li, X., Zhang, Q., & Lian, X. (2009). Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Reports, 28, 527–537.CrossRefGoogle Scholar
  12. 12.
    Chandna, R., Gupta, S., Ahmad, A., Iqbal, M., & Prasad, M. (2010). Variabilities in Indian bread wheat (Triticum aestivum L.) varieties differing in nitrogen efficiency as assessed by microsatellite markers. Protoplasma, 242, 55–67.CrossRefGoogle Scholar
  13. 13.
    Coque, M., & Gallais, A. (2006). Genomic regions involved in response to grain yield selection at high and low nitrogen fertilization in maize. Theoretical and Applied Genetics, 112, 1205–1220.CrossRefGoogle Scholar
  14. 14.
    Costa, P., Bahrman, N., Frigerio, J. M., Kermer, A., & Plomion, C. (1998). Compression wood-responsive proteins in developing xylem of maritime pine (Pinus pinaster Ait.). Plant Molecular Biology, 38, 587–596.CrossRefGoogle Scholar
  15. 15.
    Crete, P., Caboche, M., & Meyer, C. (1997). Nitrite reductase expression is regulated at the post-transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana. The Plant Journal, 11, 625–634.CrossRefGoogle Scholar
  16. 16.
    Dhugga, K. S., Waines, J. G., & Leonard, R. T. (1988). Correlation induction nitrate and membrane polypeptides in corn roots. Plant Physiology, 87, 120–125.CrossRefGoogle Scholar
  17. 17.
    Djannane, S., Chauvin, J. E., & Meyer, C. (2002). Glasshouse behaviour of eight transgenic potato clones with a modified nitrate reductase expression under two fertilization regimes. Journal of Experimental Botany, 53, 1037–1045.CrossRefGoogle Scholar
  18. 18.
    Engelsberger, W. R., & Schulze, W. X. (2012). Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen starved Arabidopsis seedlings. The Plant Journal. doi: 10.1111/j.1365-313X.2011.04848.x.
  19. 19.
    Fan, H., Pringle, T. H., Kuhn, R. M., Karolchik, D., Diekhans, M., Haussler, D., & Kent, W. J. (2005). The UCSC Proteome Browser. Nucleic Acid Research, 33, 454–458.Google Scholar
  20. 20.
  21. 21.
    Gallais, A., & Hirel, B. (2004). An approach to the genetics of nitrogen use efficiency in maize. Journal of Experimental Botany, 55(396), 295–306.CrossRefGoogle Scholar
  22. 22.
    Hakeem, K. R., Ahmad, A., Iqbal, M., Gucel, S., & Ozturk, M. (2011). Nitrogen-efficient rice cultivars can reduce nitrate pollution. Environmental Science and Pollution Research, 18, 1184–1193.CrossRefGoogle Scholar
  23. 23.
    Hakeem, K. R., Chandna, R., Ahmad, A., & Iqbal, M. (2011b). Physiological and molecular analysis of applied nitrogen in rice (Oryza sativa L.) genotypes. Rice Science, 19(1).Google Scholar
  24. 24.
    Hirel, B., & Lea, P. J. (2001). Ammonium assimilation. In P. J. Lea & J. F. Morot-Gaudry (Eds.), Plant nitrogen. Berlin: Springer.Google Scholar
  25. 25.
    Hoshida, H., Tanaka, Y., Hibino, T., Hayashi, Y., Tanaka, A., et al. (2000). Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Molecular Biology, 43, 103–111.CrossRefGoogle Scholar
  26. 26.
    Huang, Q. M., Liu, W. H., Sun, H., Deng, X., & Su, J. (2005). Agrobacterium tumefaciens mediated transgenic wheat plants with glutamine synthetases confer tolerance to herbicide. Journal of Plant Ecology, 29, 338–344.Google Scholar
  27. 27.
    Hunt, J., & Seymour, D. J. (1985). Method for measuring nitrate-nitrogen in vegetables using anion-exchange high performance liquid chromatography. Analyst, 110, 131–133.CrossRefGoogle Scholar
  28. 28.
    Ireland, R. J., & Lea, P. J. (1999). The enzymes of glutamine, glutamate, asparagine and aspirate metabolism. In B. K. Singh (Ed.), Plant amino acids: biochemistry and biotechnology (pp. 49–109). New York: Dekker.Google Scholar
  29. 29.
    Kanwar, J. S., Katyal, J. C. (1997). Plant nutrient needs. Supply, efficiency and policy issues: 2000–2025. New Delhi: National Academy of Agricultural Sciences.Google Scholar
  30. 30.
    Kim, S. R., Yang, J. I., Moon, S., Ryu, C. H., An, K., Kim, K. M., Yim, J., & An, G. (2009). An rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria. The Plant Journal, 59, 738–749.CrossRefGoogle Scholar
  31. 31.
    Kirk, G. J. D. (2001). Plant-mediated processes to acquire nutrients: nitrogen uptake by rice plants. Plant and Soil, 232, 129–134.CrossRefGoogle Scholar
  32. 32.
    Ladha, J. K. (2005). Improving the recovery efficiency of fertilizer nitrogen in cereals. Journal of Indian Society of Soil Sciences, 53, 472–483.Google Scholar
  33. 33.
    Li, Y. L., Zhang, Y. L., Hu, J., & Shen, Q. R. (2006). Contribution of nitrification happened in rhizospheric soil growing with different rice cultivars to N nutrition. Biology and Fertility of Soils, 43, 417–425.CrossRefGoogle Scholar
  34. 34.
    Li, Y. L., Zhang, Y. L., Hu, J., & Shen, Q. R. (2006). Contribution of nitrification happened in rhizospheric soil growing with different rice cultivars to N nutrition. Biology and Fertility of Soils, 43, 417–425.CrossRefGoogle Scholar
  35. 35.
    Lillo, C., Lea, U. S., Leydecker, M. T., & Meyer, C. (2003). Mutation of the regulatory phosphorylation site of tobacco nitrate reductase results in constitutive activation of the enzyme in vivo and nitrite accumulation. The Plant Journal, 35, 566–573.CrossRefGoogle Scholar
  36. 36.
    Lindgren, L. O., Kjell, G., & Stålberg, H. A. S. (2003). Seed-specific over expression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll and abscisic acid. Plant Physiology, 132, 779–785.CrossRefGoogle Scholar
  37. 37.
    Lochab, S., Pathak, R. R., & Raghuram, N. (2007). Molecular approaches for enhancement of nitrogen use efficiency in plants. In Y. P. Abrol, N. Raghuram, & M. S. Sachdev (Eds.), Agricultural nitrogen use and its environmental implications (pp. 327–350). New Delhi: IKI.Google Scholar
  38. 38.
    Longnecker, N. E., Kirby, J. M., & Robin, A. (1993). Leaf emergence, tiller growth and apical growth of nitrogen-deficient spring wheat. Crop Science, 33, 154–160.CrossRefGoogle Scholar
  39. 39.
    Luo, J., Sun, S., Jia, L., Chen, W., & Shen, Q. (2006). The mechanism of nitrate accumulation in pakchoi [Brassica campestris L. ssp. chinensis (L.)]. Plant and Soil, 282, 291–300.CrossRefGoogle Scholar
  40. 40.
    Mae, T. (1997). Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential. Plant and Soil, 196, 201–210.CrossRefGoogle Scholar
  41. 41.
    Makino, A., Mae, T., & Ohira, K. (1985). Photosynthesis and ribulose-1, 5-bisphosphate carboxylase/oxygenase in rice leaves from emergence through senescence. Planta, 166, 414–420.CrossRefGoogle Scholar
  42. 42.
    Mengel, K., & Kirby, E. A. (1978). Potassium. In K. Mengel & E. A. Kirby (Eds.), Principles of plant nutrition (pp. 376–390). Switzerland: International Potash Institute.Google Scholar
  43. 43.
    Natarajan, S., Xu, C., Caperna, T. J., & Garrett, W. M. (2005). Comparison of protein solubilisation methods suitable for proteomic analysis of soybean seed proteins. Analytical Biochemistry, 342, 214–220.CrossRefGoogle Scholar
  44. 44.
    Newsholme, S. J., Maleeft, B. F., Steiner, S., Anderson, N. L., & Schwartz, L. W. (2000). Two-dimensional electrophoresis of liver proteins: characterization of a drug-induced hepatomegaly in rats. Electrophoresis, 2, 2122–2128.CrossRefGoogle Scholar
  45. 45.
    Nielsen, N. E., & Schjørring, J. K. (1983). Efficiency and kinetics of phosphorus uptake from soil by barley genotypes. Plant and Soil, 72, 225–230.CrossRefGoogle Scholar
  46. 46.
    Perkins, D. N., Pappinl, D. J. C., Creasy, D. M., & Cottrell, J. S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis, 20, 3551–3567.CrossRefGoogle Scholar
  47. 47.
    Portis, A. R., Jr., & Parry, M. A. J. (2007). Discoveries in Rubisco (Ribulose 1, 5-bisphosphate carboxylase/oxygenase): a historical perspective. Photosynthesis Research, 94, 121–143.CrossRefGoogle Scholar
  48. 48.
    Porubleva, L., Velden, K. V., Kothari, S., Oliver, D. J., & Chitnis, P. R. (2001). The proteome of maize leaves: use of gene sequences and expressed sequence tag data for identification of proteins with peptide mass fingerprints. Electrophoresis, 22, 1724–1738.CrossRefGoogle Scholar
  49. 49.
    Prasad, R. (1998). Fertilizer urea, food security and the environment. Current Science, 75, 677–683.Google Scholar
  50. 50.
    Qureshi, M. I., D’Amici, G. M., Fagioni, M., Rinalducci, S., & Zolla, L. (2010). Iron stabilizes thylakoid protein–pigment complexes in Indian mustard grown under Cd-stress as revealed by BN–SDS–PAGE and ESI–MS/MS. Journal of Plant Physiology, 167, 761–770.CrossRefGoogle Scholar
  51. 51.
    Rengel, Z., & Graham, R. D. (1995). Wheat genotypes differ in Zn efficiency when grown in chelate-buffered nutrient solution. Plant and Soil, 176, 307–316.CrossRefGoogle Scholar
  52. 52.
    Sagan, M., Messager, A., & Duc, G. (1993). Specificity of the rhizobium–legume symbiosis obtained after mutagenesis in pea (Pisum sativum L.). New Phytologist, 125, 757–761.CrossRefGoogle Scholar
  53. 53.
    Sarkar, A., & Agrawal, S. B. (2012). Evaluating the response of two high yielding Indian rice cultivars against ambient and elevated levels of ozone by using open top chambers. Journal of Environmental Management, 95, S19eS24.CrossRefGoogle Scholar
  54. 54.
    Shigeto, J., Yoshihara, S., Adam Suaad, E. H., Sueyoshi, K., Sakamoto, A., Morikawa, H., & Takahashi, M. (2006). Genetic engineering of nitrite reductase gene improves uptake and assimilation of nitrogen dioxide by Rhaphiolepis umbellate (Thunb.) Makino. Plant Biotechnology, 23, 111–116.CrossRefGoogle Scholar
  55. 55.
    Takashaki, M., Sasaki, Y., Ida, S., & Morikawa, H. (2001). Nitrite reductase gene enrichment improves assimilation of NO2 in Arabidopsis. Plant Physiology, 126, 731–741.CrossRefGoogle Scholar
  56. 56.
    Thiellement, H., Plomion, C., & Zivy, M. (2001). Proteomics from protein sequence to function. Oxford: BIOS Scientific.Google Scholar
  57. 57.
    Wallsgrove, R. M., Turner, J. C., Hall, N. P., Kendall, A. C., & Bright, S. W. J. (1987). Barley mutants lacking chloroplast glutamine synthetase biochemical and genetic analysis. Plant Physiology, 83, 155–158.CrossRefGoogle Scholar
  58. 58.
    Wang, R., Guegler, K., Labrie, S. T., & Crawford, N. M. (2000). Genomic analysis of a nutrient response in Arabidopsis reveals diverse expression patterns and novel metabolic and potential regulatory genes induced by nitrate. The Plant Cell, 12, 1491–1509.Google Scholar
  59. 59.
    Wang, Y. H., Garvin, D. F., & Kochian, L. V. (2001). Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiology, 127, 345–359.CrossRefGoogle Scholar
  60. 60.
    Wang, X., Bian, Y., Cheng, K., Zou, H., Sun, S. S. M., & He, J. H. (2012). A comprehensive differential proteomic study of nitrate deprivation in Arabidopsis reveals complex regulatory networks of plant nitrogen responses. Journal of Proteome Research, 11, 2301–2315.CrossRefGoogle Scholar
  61. 61.
    Yanagisawa, S., Akiyama, A., Kisaka, H., Uchimiya, H., & Miwa, T. (2004). Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low nitrogen conditions. Proc Natl Acad Sci USA, 101, 7833–7838.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Botany, Molecular Ecology Laboratory, Faculty of ScienceHamdard UniversityNew DelhiIndia
  2. 2.Department of Biotechnology, Proteomics & Bioinformatics LaboratoryJamia Millia IslamiaNew DelhiIndia

Personalised recommendations