Applied Biochemistry and Biotechnology

, Volume 168, Issue 3, pp 708–717 | Cite as

Efficiency and Stability Enhancement of Cis-epoxysuccinic Acid Hydrolase by Fusion with a Carbohydrate Binding Module and Immobilization onto Cellulose



Cis-epoxysuccinic acid hydrolase (CESH) is an enzyme that catalyzes cis-epoxysuccinic acid to produce enantiomeric L(+)-tartaric acid. The production of tartaric acid by using CESH would be valuable in the chemical industry because of its high yield and selectivity, but the low stability of CESH hampers its application. To improve the stability of CESH, we fused five different carbohydrate-binding modules (CBMs) to CESH and immobilized the chimeric enzymes on cellulose. The effects of the fusion and immobilization on the activity, kinetics, and stability of CESH were compared. Activity measurements demonstrated that the fusion with CBMs and the immobilization on cellulose increased the pH and temperature adaptability of CESH. The chimeric enzymes showed significantly different enzyme kinetics parameters, among which the immobilized CBM30-CESH exhibited twofold catalytic efficiency compared with the native CESH. The half-life measurements indicated that the stability of the enzyme in its free form was slightly increased by the fusion with CBMs, whereas the immobilization on cellulose significantly increased the stability of the enzyme. The immobilized CBM30-CESH showed the longest half-life, which is more than five times the free native CESH half-life at 30 °C. Therefore, most CBMs can improve enzymatic properties, and CBM30 is the best fusion partner for CESH to improve both its enzymatic efficiency and its stability.


Cis-epoxysuccinic acid hydrolase Carbohydrate binding module Fusion enzyme Enzyme stability Affinity immobilization 



We thank Zai-Kun Xu for help with the molecular cloning and Dr. Yifei Li for critical reading of the manuscript. This work is supported by the National Basic Research Program of China (973-project, grant no. 2011CB707404), the One Hundred Talented People Program (KSCX2-YW-G-066) of the Chinese Academy of Sciences, and the National Natural Science Foundation of China (grant no. 30970050).

Supplementary material

12010_2012_9811_MOESM1_ESM.pdf (830 kb)
ESM 1 PDF 829 kb


  1. 1.
    Boraston, A. B., Bolam, D. N., Gilbert, H. J., & Davies, G. J. (2004). The Biochemical Journal, 382, 769–781.CrossRefGoogle Scholar
  2. 2.
    Buckoa, M., Vikartovskaa, A., Lacíkb, I., Kollarikovab, G., Gemeinera, P., Patoprstya, V., & Brygin, M. (2005). Enzyme and Microbial Technology, 36, 118–126.CrossRefGoogle Scholar
  3. 3.
    Cui, G. Z., Wang, S., Li, Y., Tian, Y. J., Feng, Y., & Cui, Q. (2012). The Protein Journal, 31, 432–438.CrossRefGoogle Scholar
  4. 4.
    Fishman, A., Levy, I., Cogan, U., & Shoseyov, O. (2002). Journal of Molecular Catalysis B: Enzymatic, 18, 121–131.CrossRefGoogle Scholar
  5. 5.
    Fontes, C. M., & Gilbert, H. J. (2010). Annual Review of Biochemistry, 79, 655–681.CrossRefGoogle Scholar
  6. 6.
    George, B. P., & Williams, P. H. (1959). The Journal of Organic Chemistry, 24, 54–55.CrossRefGoogle Scholar
  7. 7.
    Ghosh, A. K., Koltun, E. S., & Bilcer, G. (2001). Synthesis, 2001, 1281–1301.CrossRefGoogle Scholar
  8. 8.
    Gilkes, N. R., Jervis, E., Henrissat, B., Tekant, B., Miller, R. C., Jr., Warren, R. A., & Kilburn, D. G. (1992). The Journal of Biological Chemistry, 267, 6743–6749.Google Scholar
  9. 9.
    Guerreiro, C. I., Fontes, C. M., Gama, M., & Domingues, L. (2008). Protein Expression and Purification, 59, 161–168.CrossRefGoogle Scholar
  10. 10.
    Hong, J., Ye, X., Wang, Y., & Zhang, Y. H. (2008). Analytica Chimica Acta, 621, 193–199.CrossRefGoogle Scholar
  11. 11.
    Hong, J., Ye, X., & Zhang, Y. H. (2007). Langmuir, 23, 12535–12540.CrossRefGoogle Scholar
  12. 12.
    Huang, L., Wang, P., Tian, J., Jiang, H., Wu, N., Yang, P., Yao, B., & Fan, Y. (2012). Biotechnology Letters, 34, 1115–1121.CrossRefGoogle Scholar
  13. 13.
    Kataeva, I. A., Blum, D. B., Li, X. L., & Ljungdahl, L. G. (2001). Protein Engineering, 14, 167–172.CrossRefGoogle Scholar
  14. 14.
    Kavoosi, M., Lam, D., Bryan, J., Kilburn, D. G., & Haynes, C. A. (2007). Journal of Chromatography. A, 1175, 187–196.CrossRefGoogle Scholar
  15. 15.
    Kirshenbaum, K. S., & Sharpless, K. B. (1985). The Journal of Organic Chemistry, 50, 1979–1982.CrossRefGoogle Scholar
  16. 16.
    Koseki, T., Mochizuki, K., Kisara, H., Miyanaga, A., Fushinobu, S., Murayama, T., & Shiono, Y. (2010). Applied Microbiology and Biotechnology, 86, 155–161.CrossRefGoogle Scholar
  17. 17.
    Levy, I., & Shoseyov, O. (2002). Biotechnology Advances, 20, 191–213.CrossRefGoogle Scholar
  18. 18.
    Linder, M., Nevanen, T., Soderlund, H., & Bengs, O. (1998). Biotechnology and Bioengineering, 60, 642–647.CrossRefGoogle Scholar
  19. 19.
    Linder, M., & Teeri, T. T. (1997). Journal of Biotechnology, 57, 15–28.CrossRefGoogle Scholar
  20. 20.
    Lineweaver, H., & Burk, D. (1934). Journal of the American Chemical Society, 56, 658–666.CrossRefGoogle Scholar
  21. 21.
    Liu, Y. Q., Yan, X. K., Zhou, W. L., Pan, Z. M., & Zhang, J. P. (1983). Industrial Microbiology, 13, 32–37.Google Scholar
  22. 22.
    Liu, Z., Li, Y., Xu, Y., Ping, L., & Zheng, Y. (2007). Applied Microbiology and Biotechnology, 74, 99–106.CrossRefGoogle Scholar
  23. 23.
    Mamo, G., Hatti-Kaul, R., & Mattiasson, B. (2007). Extremophiles, 11, 169–177.CrossRefGoogle Scholar
  24. 24.
    Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Enzyme and Microbial Technology, 40, 1451–1463.CrossRefGoogle Scholar
  25. 25.
    Murashima, K., Kosugi, A., & Doi, R. H. (2003). Proteins, 50, 620–628.CrossRefGoogle Scholar
  26. 26.
    Myung, S., Zhang, X. Z., & Percival Zhang, Y. H. (2011). Biotechnology Progress, 27, 969–975.CrossRefGoogle Scholar
  27. 27.
    Rodriguez, B., Kavoosi, M., Koska, J., Creagh, A. L., Kilburn, D. G., & Haynes, C. A. (2004). Biotechnology Progress, 20, 1479–1489.CrossRefGoogle Scholar
  28. 28.
    Rogers, T. A., & Bommarius, A. S. (2010). Chemical Engineering Science, 65, 2118–2124.CrossRefGoogle Scholar
  29. 29.
    Saleemuddin, M. (1999). Advances in Biochemical Engineering/Biotechnology, 64, 203–226.CrossRefGoogle Scholar
  30. 30.
    Santiago-Hernandez, J. A., Vasquez-Bahena, J. M., Calixto-Romo, M. A., Xoconostle-Cazares, G. B., Ortega-Lopez, J., Ruiz-Medrano, R., Montes-Horcasitas, M. C., & Hidalgo-Lara, M. E. (2006). Enzyme and Microbial Technology, 40, 172–176.CrossRefGoogle Scholar
  31. 31.
    Shoseyov, O., Shani, Z., & Levy, I. (2006). Microbiology and Molecular Biology Reviews, 70, 283–295.CrossRefGoogle Scholar
  32. 32.
    Sugimoto, N., Igarashi, K., & Samejima, M. (2012). Protein Expression and Purification, 82, 290–296.CrossRefGoogle Scholar
  33. 33.
    Tomme, P., Boraston, A., McLean, B., Kormos, J., Creagh, A. L., Sturch, K., Gilkes, N. R., Haynes, C. A., Warren, R. A., & Kilburn, D. G. (1998). Journal of Chromatography B, 715, 283–296.CrossRefGoogle Scholar
  34. 34.
    Tormo, J., Lamed, R., Chirino, A. J., Morag, E., Bayer, E. A., Shoham, Y., & Steitz, T. A. (1996). The EMBO Journal, 15, 5739–5751.Google Scholar
  35. 35.
    Wang, R., Xue, Y., Wu, X., Song, X., & Peng, J. (2010). Enzyme and Microbial Technology, 47, 194–199.CrossRefGoogle Scholar
  36. 36.
    Willaert, R., & De Vuyst, L. (2006). Applied Microbiology and Biotechnology, 71, 155–163.CrossRefGoogle Scholar
  37. 37.
    Xu, Y., & Foong, F. C. (2008). Journal of Biotechnology, 135, 319–325.CrossRefGoogle Scholar
  38. 38.
    Ye, X., Zhu, Z., Zhang, C., & Zhang, Y. H. (2011). Applied Microbiology and Biotechnology, 92, 551–560.CrossRefGoogle Scholar
  39. 39.
    Yeh, M., Craig, S., Lum, M. G., & Foong, F. C. (2005). Journal of Biotechnology, 116, 233–244.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Qingdao Institute of BioEnergy and Bioprocess TechnologyChinese Academy of SciencesQingdaoChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations