Applied Biochemistry and Biotechnology

, Volume 168, Issue 3, pp 542–549 | Cite as

Degradation of Alkylphenols by White Rot Fungus Irpex lacteus and Its Manganese Peroxidase

Article

Abstract

Alkylphenols are common endocrine disrupters that are produced from the degradation of widely used surfactants. Since they cause various harmful effects on aquatic life and in humans, they should be removed from the environments being contaminated. White rot fungus Irpex lacteus can completely degrade 100 mg/L of octylphenol, nonylphenol, and phenylphenol during 1 day of incubation in the complex YMG medium, which was the highest degrading capability among nine strains of white rot fungi tested. In the N-limited Kirk’s basal salts medium, I. lacteus could degrade almost 100 % of 100 mg/L octylphenol and nonylphenol in 1 h, and exhibited a high activity of manganese peroxidase (MnP; 1,790 U/L). MnP of I. lacteus was purified by ion exchange chromatography, and this degraded 99 % of 50 mg/L octylphenol and removed 80 % of estrogenic activity in 2 hours. In addition, the purified MnP (10 U/mL) degraded over 90 % of 50 mg/L nonylphenol in 1 h.

Keywords

Alkylphenols White rot fungi Irpex lacteus Manganese peroxidase Estrogenic activity 

References

  1. 1.
    Baborová, P., Möder, M., Baldrian, P., Cajthamlová, & Cajthaml, T. (2006). Research in Microbiology, 157, 248–253.CrossRefGoogle Scholar
  2. 2.
    Cabana, H., Jiwan, J.-L., Rosenberg, R., Elisashvili, V., Penninckx, M., Agathos, S., et al. (2007). Chemosphere, 67, 770–778.CrossRefGoogle Scholar
  3. 3.
    Cajthaml, T., Křesinová, Z., Svobodová, K., & Möder, M. (2009). Chemosphere, 75, 745–750.CrossRefGoogle Scholar
  4. 4.
    Farnet, A., Chevremont, A., Gil, G., Gastaldi, S., & Ferre, E. (2011). Chemosphere, 82, 284–289.CrossRefGoogle Scholar
  5. 5.
    Frederic, H., Sheng, D., & Gold, M. (1996). Biochimica et Biophysica Acta, 1297, 139–148.CrossRefGoogle Scholar
  6. 6.
    Gabriel, F., Giger, W., Guenther, K., & Kohler, H.-P. (2005). Applied and Environmental Microbiology, 71, 1123–1129.CrossRefGoogle Scholar
  7. 7.
    Junghanns, C., Moeder, M., Krauss, G., Martin, C., & Schlosser, D. (2005). Microbiology, 151, 45–57.CrossRefGoogle Scholar
  8. 8.
    Kim, H.-Y., & Song, H.-G. (2003). Applied Microbiology and Biotechnology, 61, 150–156.Google Scholar
  9. 9.
    Limongi, P., Kjalke, M., Vind, J., Tams, J., Johansson, T., & Welinder, K. (1995). European Journal of Biochemistry, 227, 270–276.CrossRefGoogle Scholar
  10. 10.
    Mielgo, I., Palma, C., Guisan, J., Lafuente, R., Moreira, M., Feijoo, G., et al. (2003). Enzyme and Microbial Technology, 32, 769–775.CrossRefGoogle Scholar
  11. 11.
    Nishikawa, J., Saito, K., Goto, J., Dakeyama, F., Matsuo, M., & Nishihara, T. (1999). Toxicology and Applied Pharmacology, 154, 76–83.CrossRefGoogle Scholar
  12. 12.
    Saito, T., Kato, K., Yokogawa, Y., Nishida, M., & Yamashita, N. (2004). Journal of Bioscience and Bioenginnering, 98, 64–66.Google Scholar
  13. 13.
    Sklenar, J., Niku-Paavola, M., Santos, S., Man, P., Kruus, K., & Novotny, C. (2010). Enzyme and Microbial Technology, 46, 550–556.CrossRefGoogle Scholar
  14. 14.
    Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., & Lester, J. (2008). Environmental International, 34, 1033–1049.CrossRefGoogle Scholar
  15. 15.
    Soares, A., Jonasson, K., Terrazas, E., Guieysse, B., & Mattiasson, B. (2005). Applied Microbiology and Biotechnology, 66, 719–725.CrossRefGoogle Scholar
  16. 16.
    Takeo, M., Prabu, S., Kitamura, C., Hirai, M., Takahashi, H., Kato, D., et al. (2006). Journal of Bioscience and Bioengineering, 102, 352–361.CrossRefGoogle Scholar
  17. 17.
    Tanaka, T., Nose, M., Endo, A., Fujii, T., & Taniguchi, M. (2003). Journal of Bioscience and Bioengineering, 96, 541–546.CrossRefGoogle Scholar
  18. 18.
    Tanghe, T., Dhooge, W., & Verstraete, W. (2000). Biodegradation, 11, 11–19.CrossRefGoogle Scholar
  19. 19.
    Tien, M., & Kirk, T. (1988). Methods in Enzymology, 161, 238–249.CrossRefGoogle Scholar
  20. 20.
    Tsukihara, T., Honda, Y., Sakai, R., Watanabe, T., & Watanabe, T. (2006). Journal of Biotechnology, 126, 431–439.CrossRefGoogle Scholar
  21. 21.
    Tsutsumi, Y., Haneda, T., & Nishida, T. (2001). Chemosphere, 42, 271–276.CrossRefGoogle Scholar
  22. 22.
    Vincent, M., & Sneddon, J. (2009). Microchemical Journal, 92, 112–118.CrossRefGoogle Scholar
  23. 23.
    Wang, Y., Rafael, V., & Michael, A. (2002). Current Microbiology, 45, 77–87.CrossRefGoogle Scholar
  24. 24.
    Xiaobin, X., Rong, J., Pingsheng, L., Shiqian, T., Qin, Z., Wenzhong, T., et al. (2007). Enzyme and Microbial Technology, 41, 258–264.CrossRefGoogle Scholar
  25. 25.
    Yeo, S., Park, N., Song, H.-G., & Choi, H. (2007). Journal of Microbiology, 45, 213–218.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Biological SciencesKangwon National UniversityChuncheonSouth Korea

Personalised recommendations