Advertisement

Applied Biochemistry and Biotechnology

, Volume 167, Issue 8, pp 2131–2143 | Cite as

Effects of Ionic Liquids on the Growth of Arthrobacter simplex and Improved Biodehydrogenation in an Ionic Liquid-Containing System with Immobilized Cells

  • Jin Huang
  • Songlin Xie
  • Junyao He
  • Pu WangEmail author
Article

Abstract

Dehydrogenated derivatives of corticosteroids are usually more effective than their precursors in treating diseases. In this study, the toxicity of seven water-miscible ionic liquid and three organic solvents to the biocatalyst Arthrobacter simplex UR016 was tested to evaluate the possibility of biodehydrogenation from 17α-hydroxy-16β-methyl-pregna-4,9(11)-diene-3,20-dione (HMPDD) to 17α-hydroxy-16β-methyl-pregna-1,4,9(11)-triene-3,20-dione (HMPTD) in an ionic liquid-containing system. Although most tested room temperature ionic liquids (RTILs) showed higher toxicities to A. simplex UR016 than organic solvents, bacterial growth was promoted in the presence of [EMIM](l)-Lac or [BMIM](l)-Lac at concentrations below 2.5 mmol/l, especially [EMIM](l)-Lac, presented the lowest toxicity to A. simplex. Following immobilization investigations, a conversion ratio of 89.9 % was achieved with a cell biomass of 10 g/l (dry cell weight/reaction mixture volume) in the polyethylene glycol (PEG)-modified calcium alginate gel bead, a suitable matrix for cell immobilization. Further studies indicated that the conversion ratio can be improved by increasing cell loading to 60 beads per flask (containing 30 ml reaction mixture). Under optimal conditions with a [EMIM](l)-Lac content of 0.3 %, the conversion ratio reached 93.4 %, the highest value ever reported.

Keywords

Arthrobacter simplex Ionic liquids Biodehydrogenation Immobilized cells Growth 

Notes

Acknowledgments

This work was financially supported by grants from the National Natural Science Foundation of China (21076193) and Zhejiang Provincial Natural Science Foundation of China (Y407289).

References

  1. 1.
    Adham, N. Z., El-Hady, A. A., & Naim, N. (2003). Biochemical studies on the microbial Δ1-dehydrogenation of cortisol by Pseudomonas fluorescens. Process Biochemistry, 38, 897–902.CrossRefGoogle Scholar
  2. 2.
    Zhang, L., Wang, M., Shen, Y., Ma, Y., & Luo, J. (2009). Improvement of steroid biotransformation with hydroxypropyl-β-cyclodextrin induced complexation. Applied Biochemistry and Biotechnology, 159, 642–654.CrossRefGoogle Scholar
  3. 3.
    Sun, X. Y., Wang, P., He, J. Y., & Zhou, Y. (2007). Study on biotransformation of 6-methlhydrocortisone in aqueous two-phase systems. Journal of Zhejiang University of Technology, 35, 617–621.Google Scholar
  4. 4.
    Yang, Y. F., Wang, P., He, J. Y., & Xie, S. L. (2009). Biodehydrogenation of 11β-hydroxyl medroxyprogesterone by Arthrobacter simplex UR016 in microemulsion system. Chinese Journal of Biotechnology, 25, 892–896.Google Scholar
  5. 5.
    Moon, Y. H., Lee, S. M., Ha, S. H., & Koo, Y. M. (2006). Enzyme-catalyzed reactions in ionic liquids. Korean Journal of Chemical Engineering, 23, 247–263.CrossRefGoogle Scholar
  6. 6.
    Stasiewicz, M., Mulkiewicz, E., Tomczak-Wandzel, R., Kumirska, J., Siedlecka, E. M., Gołebiowski, M., et al. (2008). Assessing toxicity and biodegradation of novel, environmentally benign ionic liquids (1-alkoxymethyl-3-hydroxypyridinium chloride, saccharinate and acesulfamates) on cellular and molecular level. Ecotoxicology and Environmental Safety, 71, 157–165.CrossRefGoogle Scholar
  7. 7.
    Chen, M., Luo, Y., Li, G. F., He, M. Q., Xie, J. M., Li, H. M., et al. (2009). Alkylation of anthracene to 2-isopropylanthracene catalyzed by Lewis acid ionic liquids. Korean Journal of Chemical Engineering, 26, 1563–1567.CrossRefGoogle Scholar
  8. 8.
    Lewandowski, A., & Świderska-Mocek, A. (2009). Ionic liquids as electrolytes for Li-ion batteries—an overview of electrochemical studies. Journal of Power Sources, 194, 601–609.CrossRefGoogle Scholar
  9. 9.
    Ma, W. Y., Lu, Y. B., Hu, R. L., Chen, J. H., Zhang, Z. Z., & Pan, Y. J. (2010). Application of ionic liquids based microwave-assisted extraction of three alkaloids N-nornuciferine, O-nornuciferine, and nuciferine from lotus leaf. Talanta, 80, 1292–1297.CrossRefGoogle Scholar
  10. 10.
    Lou, W. Y., Wang, W., Li, R. F., & Zong, M. H. (2009). Efficient enantioselective reduction of 4′-methoxyacetophenone with immobilized Rhodotorula sp. AS2.2241 cells in a hydrophilic ionic liquid-containing co-solvent system. Journal of Biotechnology, 143, 190–197.CrossRefGoogle Scholar
  11. 11.
    Dang, D. T., Ha, S. H., Lee, S. M., Chang, W. J., & Koo, Y. M. (2007). Enhanced activity and stability of ionic liquid-pretreated lipase. Journal of Molecular Catalysis B: Enzymatic, 45, 118–121.CrossRefGoogle Scholar
  12. 12.
    Matsuda, T., Yamagishi, Y., Koguchi, S., Iwai, N., & Kitazume, T. (2006). An effective method to use ionic liquids as reaction media for asymmetric reduction by Geotrichum candidum. Tetrahedron Letters, 47, 4619–4622.CrossRefGoogle Scholar
  13. 13.
    Okochi, M., Nakagawa, I., Kobayashi, T., Hayashi, S., Furusaki, S., & Honda, H. (2007). Enhanced activity of 3alpha-hydroxysteroid dehydrogenase by addition of the co-solvent 1-butyl-3-methylimidazolium (l)-lactate in aqueous phase of biphasic systems for reductive production of steroids. Journal of Biotechnology, 128, 376–382.CrossRefGoogle Scholar
  14. 14.
    Dipeolu, O., Green, E., & Stephens, G. (2008). Effects of water-miscible ionic liquids on cell growth and nitro reduction using Clostridium sporogenes. Green Chemistry, 11, 397–401.CrossRefGoogle Scholar
  15. 15.
    Ganske, F., & Bornscheuer, U. T. (2006). Growth of Escherichia coli, Pichia pastoris and Bacillus cereus in the presence of the ionic liquids [BMIM][BF4] and [BMIM][PF6] and organic solvents. Biotechnology Letters, 28, 465–469.CrossRefGoogle Scholar
  16. 16.
    Ramos, J. L., Duque, E., Gallegos, M. T., Godoy, P., Ramos-González, M. I., Rojas, A., et al. (2002). Mechanisms of solvent tolerance in gram-negative bacteria. Annual Review of Microbiology, 56, 743–768.CrossRefGoogle Scholar
  17. 17.
    Ranke, J., Mölter, K., Stock, F., Bottin-Weber, U., Poczobutt, J., Hoffmann, J., et al. (2004). Biological effects of imidazolium ionic liquids with varying chain length in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicology and Environmental Safety, 58, 396–404.CrossRefGoogle Scholar
  18. 18.
    Matzke, M., Stolte, S., Thiele, K., Juffernholz, T., Arning, J., Ranke, J., et al. (2007). The influence of anion species on the toxicity of 1-alkyl-3-methylimidazolium ionic liquids observed in an (eco) toxicological test battery. Green Chemistry, 9, 1198–1207.CrossRefGoogle Scholar
  19. 19.
    Stolte, S., Matzke, M., Arning, J., Böschen, A., Pitner, W. R., Welz-Biermann, U., et al. (2007). Effects of different head groups and functionalised side chains on the aquatic toxicity of ionic liquids. Green Chemistry, 9, 1170–1179.CrossRefGoogle Scholar
  20. 20.
    Numanoğlu, Y., & Sungur, S. (2004). β-Galactosidase from Kluyveromyces lactis cell disruption and enzyme immobilization using a cellulose–gelatin carrier system. Process Biochemistry, 39, 705–711.CrossRefGoogle Scholar
  21. 21.
    Cheng, S., Wei, D., Song, Q., & Zhao, X. (2006). Immobilization of permeabilized whole cell penicillin G acylase from Alcaligenes faecalis using pore matrix crosslinked with glutaraldehyde. Journal of Biotechnology Letter, 28, 1129–1133.CrossRefGoogle Scholar
  22. 22.
    Yan, S. B., Wang, P. C., Zhai, Z. J., & Yao, J. M. (2011). Fuel ethanol production from concentrated food waste hydrolysates in immobilized cell reactors by Saccharomyces cerevisiae H058. Journal of Chemical Technology and Biotechnology, 86, 731–738.CrossRefGoogle Scholar
  23. 23.
    Akdogan, H. A., & Pazarlioglu, N. K. (2011). Fluorene biodegradation by P. osteratus—Part II: biodegradation by immobilized cells in a recycled packed bed reactor. Process Biochemistry, 46, 840–846.CrossRefGoogle Scholar
  24. 24.
    Kurbanoglu, E. B., Zilbeyaz, K., Ozdal, M., Taskin, M., & Kurbanoglu, N. I. (2010). Asymmetric reduction of substituted acetophenones using once immobilized Rhodotorula glutinis cells. Bioresource Technology, 101, 3825–3829.CrossRefGoogle Scholar
  25. 25.
    Wang, P., Lin, J. P., Chen, X. Y., & Cen, P. L. (2004). Kinetic study on the Δ1-dehydrogenation of 17α-hydroxy-16β-methyl-pregna-4,9(11)-diene-3,20-dione by Arthrobacter simplex. Journal of Zhejiang University, 38, 1035–1038.Google Scholar
  26. 26.
    Seifert, D. B., & Phillips, J. A. (1997). Porous alginate-poly(ethylene glycol) entrapment system for the cultivation of mammalian cells. Biotechnology Progress, 13, 569–576.CrossRefGoogle Scholar
  27. 27.
    Tang, Y., Sun, Z., Hua, L., Lv, C., Guo, X., & Wang, J. (2002). Kinetic resolution of dl-pantolactone by immobilized Fusarium moniliforme SW-902. Process Biochemistry, 38, 545–549.CrossRefGoogle Scholar
  28. 28.
    Cho, C. W., Jeon, Y. C., Pham, T. P. T., Vijayaraghavan, K., & Yun, Y. S. (2008). The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Ecotoxicology and Environmental Safety, 71, 166–171.CrossRefGoogle Scholar
  29. 29.
    Van Ewijk, P. H., & Hoekstra, J. A. (1993). Calculation of the EC50 and its confidence interval when subtoxic stimulus is present. Ecotoxicology and Environmental Safety, 25, 25–32.CrossRefGoogle Scholar
  30. 30.
    Pham, T. P., Cho, C. W., Min, J., & Yun, Y. S. (2008). Alkyl-chain length effects of imidazolium and pyridinium ionic liquids on photosynthetic response of Pseudokirchneriella subcapitata. Journal of Bioscience and Bioengineering, 105, 425–428.CrossRefGoogle Scholar
  31. 31.
    Xie, S. L., Zheng, S. X., He, J. Y., Wang, P., & Wang, R. Z. (2011). Study on the biodehydrogenation of 17α-hydroxy-16β-methylpregna-4,9(11)-diene-3,20-dione by Arthrobacter simplex in an ionic liquid containing system. Journal of Zhejiang University of Technology, 39, 532–535.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.College of Pharmaceutical ScienceZhejiang University of TechnologyHangzhouChina
  2. 2.Zhejiang Pharmaceutical CollegeNingboChina

Personalised recommendations