Advertisement

Applied Biochemistry and Biotechnology

, Volume 167, Issue 8, pp 2357–2368 | Cite as

Identification of Newly Zeaxanthin-Producing Bacteria Isolated from Sponges in the Gulf of Thailand and their Zeaxanthin Production

  • Patcharee Thawornwiriyanun
  • Somboon Tanasupawat
  • Chutiwan Dechsakulwatana
  • Somkiet Techkarnjanaruk
  • Worapot SuntornsukEmail author
Article

Abstract

Sponge-associated bacteria have been found to produce a variety of bioactive compounds including natural pigments. Here, we report the molecular identification of zeaxanthin-producing sponge-associated bacteria isolated from sponges in the Gulf of Thailand and the effect of environmental factors on zeaxanthin production from a bacterium. Three colorful sponge-associated bacteria (CHOB06-6, KODA19-6, and MAKB08-4) were identified based on the 16S rDNA profile. The 16S rDNA sequence-based analyses revealed that CHOB 06-6 and MAKB 08-4 were the closest relatives to Sphingomonas phyllosphaerae FA2T, and KODA19-6 was a relative of Shingomonas (Blastomonas) natatoria DSM 3183T. After all bacteria were cultivated in a modified Zobell medium, S. natatoria KODA19-6 was found to produce the highest zeaxanthin at 0.62 mg/l. pH and temperature considerably affected its zeaxanthin production. Its optimal condition for zeaxanthin production was found at a pH of 7 and 30 °C. The bacterium had a maximum specific growth rate (μ max) of 0.06 1/h with zeaxanthin productivity (Q p) of 6.27 μg/l·h. Therefore, this newly zeaxanthin-producing bacterium has a potential to produce natural zeaxanthin for the food, feed, pharmaceutical, and cosmetic industries.

Keywords

Identification Zeaxanthin Sponge-associated bacteria Production Sphingomonas phyllosphaerae Sphingomonas natatoria 

Notes

Acknowledgments

We would like to acknowledge the Thailand Research Fund (TRF) for awarding a scholarship of Patcharee Thawornwiriyanun under the Royal Golden Jubilee Ph.D. Program (Grant No. PHD/0056/2548) and the Royal Thai Government for financial support through the research budgets of KMUTT and Burapha University. We are also grateful to Miss Nimaradee Boonapatcharoen from KMUTT, Bangkhuntien campus, for her guidance and generous help with genetic techniques. Finally, we thank Michael Willing for editing our manuscript.

References

  1. 1.
    Ashton, O. B. O., Wong, M., McGhie, T. K., Vather, R., Wang, Y., Requejo-Jackman, C., Ramankutty, P., & Woolf, A. B. (2006). Journal of Agricultural and Food Chemistry, 54, 10151–10158.CrossRefGoogle Scholar
  2. 2.
    Khachik, F., Beecher, G. R., & Lusby, W. R. (1989). Journal of Agricultural and Food Chemistry, 37, 1465–1473.CrossRefGoogle Scholar
  3. 3.
    Jin, E. S., Polle, J. W., Lee, H. K., Hyun, S. M., & Chang, M. J. (2003). Journal of Microbiology and Biotechnology, 13, 165–174.Google Scholar
  4. 4.
    Bhosale, P., & Bernstein, P. S. (2004). Journal of Industrial Microbiology and Biotechnology, 31, 565–571.CrossRefGoogle Scholar
  5. 5.
    Asker, D., Beppu, T., & Ueda, K. (2007). International Journal of Systematic and Evolutionary Microbiology, 57, 837–843.CrossRefGoogle Scholar
  6. 6.
    Asker, D., Beppu, T., & Ueda, K. (2007). Systematic and Applied Microbiology, 30, 291–296.CrossRefGoogle Scholar
  7. 7.
    Lagarde, D., Beuf, L., & Vermaas, W. (2000). Applied and Environmental Microbiology, 66, 64–72.CrossRefGoogle Scholar
  8. 8.
    Hundle, B. S., O’Brien, D. A., Beyer, P., Kleinig, H., & Hearst, J. E. (1993). FEBS Letters, 315, 329–334.CrossRefGoogle Scholar
  9. 9.
    Berry, A., Janssens, D., Humbelin, M., Jore, J. P., Hoste, B., Cleenwerck, I., Vancanneyt, M., Bretzel, W., Mayer, A. F., Lopes-Ulibarri, R., Shanmugam, B., Swings, J., & Pasamontes, L. (2003). International Journal of Systematic and Evolutionary Microbiology, 53, 231–238.CrossRefGoogle Scholar
  10. 10.
    Alcantara, S., & Sanchez, S. (1999). Journal of Industrial Microbiology and Biotechnology, 23, 697–700.CrossRefGoogle Scholar
  11. 11.
    Stafsnes, M. H., Josefsen, K. D., Kildahl-Andersen, G., Valla, S., Ellingsen, T. E., & Bruheim, P. (2010). Journal of Microbiology, 48, 16–23.CrossRefGoogle Scholar
  12. 12.
    Beatty, S., Boulton, M., Henson, D., Koh, H. H., & Murray, I. J. (1999). British Journal of Ophthalmology, 83, 867–877.CrossRefGoogle Scholar
  13. 13.
    Landrum, J. T., & Bone, R. A. (2001). Archives of Biochemistry and Biophysics, 385, 28–40.CrossRefGoogle Scholar
  14. 14.
    Loane, E., Nolan, J. M., Donovan, O., Bhosale, P., Bernstein, P. S., & Beatty, S. (2008). Survey of Ophthalmology, 53, 68–81.CrossRefGoogle Scholar
  15. 15.
    Mares-Perlman, J. A., Millen, A. E., Ficek, T. L., & Hankinson, S. E. (2002). Journal of Nutrition, 132, 518S–524S.Google Scholar
  16. 16.
    Sajilata, M. G., Singhal, R. S., & Kamat, M. Y. (2008). Comprehensive Review in Food Science, 7, 29–49.CrossRefGoogle Scholar
  17. 17.
    Nishino, H., Murakoshi, M., Ii, T., Takemura, M., Kuchide, M., Kanazawa, M., Mou, X. Y., Wada, S., Masuda, M., Ohsaka, Y., Yogosawa, S., Satomi, Y., & Jinno, K. (2002). Cancer Metastasis Reviews, 21, 257–264.CrossRefGoogle Scholar
  18. 18.
    Anand, T. P., Bhat, A. W., Shouche, Y. S., Roy, U., Siddharth, J., & Sarma, S. P. (2006). Microbiology Research, 161, 252–262.CrossRefGoogle Scholar
  19. 19.
    Ridley, C. P., Bergquist, P. R., Harper, M. K., Faulkner, D. J., Hooper, J. N. A., & Haygood, M. G. (2005). Chemistry & Biology, 12, 397–406.CrossRefGoogle Scholar
  20. 20.
    Webb, V. L., & Maas, E. W. (2002). FEMS Microbiology Letters, 207, 43–47.CrossRefGoogle Scholar
  21. 21.
    Li, Z.Y., He, L.M., Wu, J. and Jiang, Q. (2006) Journal of Experimental Marine Biology and Ecology. 329, 75–85.Google Scholar
  22. 22.
    Olson, J. B., Harmody, D. K., & McCarthy, P. J. (2002). FEMS Microbiology Letters, 211, 169–173.Google Scholar
  23. 23.
    Thiel, V., & Imhoff, J. F. (2003). Biomolecular Engineering, 20, 421–423.CrossRefGoogle Scholar
  24. 24.
    Lee, Y. K., Lee, J. H., & Lee, H. K. (2001). Journal of Microbiology, 39, 254–264.Google Scholar
  25. 25.
    Wilkinson, C. R. (1978). Marine Biology, 49, 169–176.CrossRefGoogle Scholar
  26. 26.
    Bultel-Poncé, V., Cécile, D., Jean-Pascal, B., Claude, C., & Michèle, G. (1998). Journal of Marine Biotechnology, 6, 233–236.Google Scholar
  27. 27.
    Chelossi, E., Milanese, M., Milano, A., Pronzato, R., & Riccardi, G. (2004). Journal of Experimental Marine Biology and Ecology, 309, 21–33.CrossRefGoogle Scholar
  28. 28.
    Perovic, S., Wichels, A., Schött, C., Gerdts, G., Pahler, S., Steffen, R., & Müller, W. E. G. (1998). Environmental Toxicology and Pharmacology, 6, 125–133.CrossRefGoogle Scholar
  29. 29.
    De Rosa, S., Mitova, M., & Tommonaro, G. (2003). Biomolecular Engineering, 20, 311–316.CrossRefGoogle Scholar
  30. 30.
    Kelecom, A. (2002). Annals of Brazilian Academy of Sciences, 74, 151–170.CrossRefGoogle Scholar
  31. 31.
    Takaichi, S. (2000). Photosynthesis Research, 65, 93–99.CrossRefGoogle Scholar
  32. 32.
    Brenner, D. J., Krieg, N. R., & Staley, J. T. (2005). Bergey’s manual of systematic bacteriology Volume II. In G. M. Garrity (Ed.), Alphaproteobacteria (pp. 1–1191). New York: Springer.Google Scholar
  33. 33.
    Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). Molecular Biology and Evolution, 24, 1596–1599.CrossRefGoogle Scholar
  34. 34.
    Taylor, M. W., Radax, R., Steger, D., & Wagner, M. (2007). Microbiology and Molecular Biology Reviews, 71, 295–347.CrossRefGoogle Scholar
  35. 35.
    Bhosale, P., & Bernstein, P. S. (2005). Applied Microbiology and Biotechnology, 68, 445–455.CrossRefGoogle Scholar
  36. 36.
    Jin, E. S., Feth, B., & Melis, A. (2003). Biotechnology and Bioengineering, 81, 115–124.CrossRefGoogle Scholar
  37. 37.
    Hoshino, T., Ojima, K. and Setoguchi, Y. (2004) PCT Int. Appl., 21 pp. Application: WO 2003-EP10574 20030923.Google Scholar
  38. 38.
    Beuttler, H., Hoffmann, J., Jeske, M., Hauer, B., Schmid, R.F., Altenbuchner, J. and Urlacher, V.B. (2010) Applied Microbiology and Biotechnology, 89, 1137–1147.Google Scholar
  39. 39.
    Rivas, R., Abril, A., Trujillo, M. E., & Velázquez, E. (2004). International Journal of Systematic and Evolutionary Microbiology, 54, 2147–2150.CrossRefGoogle Scholar
  40. 40.
    Hiraishi, A., Kuraishi, H., & Kawahara, K. (2000). International Journal of Systematic and Evolutionary Microbiology, 50, 1113–1118.CrossRefGoogle Scholar
  41. 41.
    Sly, L. I., & Hargreaves, M. H. (1984). Journal of Applied Bacteriology, 56, 479–486.CrossRefGoogle Scholar
  42. 42.
    Asker, D., Beppu, T., & Ueda, K. (2008). International Journal of Systematic and Evolutionary Microbiology, 58, 601–606.CrossRefGoogle Scholar
  43. 43.
    Lafi, F. F., Garson, M. J., & Fuerst, J. F. (2005). Microbial Ecology, 50, 213–220.CrossRefGoogle Scholar
  44. 44.
    Sarada, R., Tripathi, U., & Ravishankar, G. A. (2002). Process Biochemistry, 37, 623–627.CrossRefGoogle Scholar
  45. 45.
    Aksu, Z., & Eren, A. T. (2007). Biochemical Engineering Journal, 35, 107–113.CrossRefGoogle Scholar
  46. 46.
    Hu, Z. C., Zheng, Y. G., Wang, Z., & Shen, Y. C. (2006). Enzyme Microbial Technology, 39, 586–590.CrossRefGoogle Scholar
  47. 47.
    Tjahjono, A. E., Hayama, Y., Kakizono, T., Terada, Y., Nishio, N., & Nagai, S. (1994). Biotechnology Letters, 16, 133–138.CrossRefGoogle Scholar
  48. 48.
    Johnson, E. A., & Lewis, M. J. (1979). Journal of General Microbiology, 115, 173–183.CrossRefGoogle Scholar
  49. 49.
    Wang, Y., & Peng, J. (2008). World Journal of Microbiology and Biotechnology, 24, 1915–1922.CrossRefGoogle Scholar
  50. 50.
    Masetto, A., Flores-Cotera, L. B., Díaz, C., Langley, E., & Sanchez, S. (2001). Journal of Bioscience and Bioengineering, 92, 55–58.Google Scholar
  51. 51.
    Bhosale, P., Larson, A. J., & Bernstein, P. S. (2004). Journal of Applied Microbiology, 96, 623–629.CrossRefGoogle Scholar
  52. 52.
    Bhosale, P., Ermakov, I. V., Ermakova, M. R., Gellermann, W., & Bernstein, P. S. (2003). Biotechnology Letters, 25, 1007–1011.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Patcharee Thawornwiriyanun
    • 1
  • Somboon Tanasupawat
    • 2
  • Chutiwan Dechsakulwatana
    • 3
  • Somkiet Techkarnjanaruk
    • 4
  • Worapot Suntornsuk
    • 1
    Email author
  1. 1.Department of Microbiology, Faculty of ScienceKing Mongkut’s University of Technology ThonburiBangkokThailand
  2. 2.Department of Microbiology, Faculty of Pharmaceutical SciencesChulalongkorn UniversityBangkokThailand
  3. 3.Institute of Marine ScienceBurapha UniversityChonburiThailand
  4. 4.Biochemical Engineering and Pilot Plant Research and Development Unit, National Center for Genetics Engineering and BiotechnologyKing Mongkut’s University of Technology ThonburiBangkokThailand

Personalised recommendations