Advertisement

Applied Biochemistry and Biotechnology

, Volume 167, Issue 7, pp 2103–2116 | Cite as

Emerging Implications of Nonmammalian Cytosine Deaminases on Cancer Therapeutics

  • Vinod Kumar Yata
  • P. Gopinath
  • Siddhartha Sankar GhoshEmail author
Article

Abstract

Nonmammalian cytosine deaminases (CDs) have been investigated for last 30 years in the context of cancer therapy. The therapeutic effect of CD is based on its ability to catalyze the conversion of nontoxic prodrug 5-fluorocytosine (5FC) into the anticancer drug 5-fluorouracil (5FU) by deamination of the number 4 carbon of 5FC. This deamination property of CD has been explored to develop innovative therapeutic approach for treatment of cancer. A general overview is needed for the identification of efficient cytosine deaminases for potential use in cancer therapy. In this review, we have discussed about nonmammalian CDs for a variety of prodrug gene/enzyme therapy applications with several recent examples. Finally, we have provided a prospective on the future aspects of CDs and their applications in cancer therapy.

Keywords

Cytosine deaminases Chemotherapy Therapeutic effect Deamination Cancer therapy 5-Fluorocytosine 5-Fluorouracil 

Abbreviations

5FC

5-Fluorocytosine

5FU

5-Fluorouracil

AO

Acridine orange

CD

Cytosine deaminase

EB

Ethidium bromide

FdUDP

Fluorodeoxyuridine diphosphate

FdUMP

Fluorodeoxyuridine monophosphate

FdUTP

Fluorodeoxyuridine triphosphate

FUDP

Fluorouridine diphosphate

FUdR

Fluorourodeoxyuridine

FUMP

Fluorouridine monophosphate

FUTP

Fluorouridine triphosphate

GCV

Ganciclovir

GFP

Green fluorescent protein

GDEPT

Gene-directed enzyme prodrug therapy

HSV-TK

Herpes simplex virus thymidine kinase

mAb

Monoclonal antibody

OPRT

Orotate phosphoribosyltransferase

PLL

Poly-l-lysine

RT-PCR

Reverse transcription polymerase chain reaction

RR

Ribonucleotide reductase

TK

Thymidine kinase

TP

Thymidine phosphorylase

TS

Thymidine synthase

UPRT

Uracil phosphoribosyltransferase

Notes

Acknowledgments

The authors acknowledge the financial support of the Department of Biotechnology (nos. BT/49/NE/TBP/2010 and BT/01/NE/PS/08) for the research on gene therapy.

References

  1. 1.
    Chatelut, E., Delord, J. P., & Canal, P. (2003). Investigational New Drugs, 21, 141–148.CrossRefGoogle Scholar
  2. 2.
    Springer, C. J., & Niculescu-Duvaz, I. (2000). The Journal of Clinical Investigation, 105, 1161–1167.CrossRefGoogle Scholar
  3. 3.
    Portsmouth, D., Hlavaty, J., & Renner, M. (2007). Molecular Aspects of Medicine, 28, 4–41.CrossRefGoogle Scholar
  4. 4.
    Austin, E. A., & Huber, B. E. (1993). Molecular Pharmacology, 43, 380–387.Google Scholar
  5. 5.
    Huber, B. E., Austin, E. A., Good, S. S., Knick, V. C., Tibbels, S., & Richards, C. A. (1993). Cancer Research, 53, 4619–4626.Google Scholar
  6. 6.
    Corban-Wilhelm, H., Ehemann, V., Becker, G., Greulich, D., Braun, K., & Debus, J. (2004). Cancer Gene Therapy, 11, 208–214.CrossRefGoogle Scholar
  7. 7.
    Gopinath, P., & Ghosh, S. S. (2009). Molecular and Cellular Biochemistry, 324, 21–29.CrossRefGoogle Scholar
  8. 8.
    Gopinath, P., & Ghosh, S. S. (2008). Biotechnology Letters, 30, 1913–1921.CrossRefGoogle Scholar
  9. 9.
    Gopinath, P., & Ghosh, S. S. (2007). Gene Therapy and Molecular Biology, 11, 219–228.Google Scholar
  10. 10.
    Li, Z., Shanmugam, N., Katayose, D., Huber, B., Srivastava, S., Cowan, K., et al. (1997). Cancer Gene Therapy, 4, 113–117.Google Scholar
  11. 11.
    Miyagi, T., Koshida, K., Hori, O., Konaka, H., Katoh, H., Kitagawa, Y., et al. (2003). The Journal of Gene Medicine, 5, 30–37.CrossRefGoogle Scholar
  12. 12.
    Wang, Z. H., Samuels, S., Gama Sosa, M. A., & Kolodny, E. H. (1998). Journal of Neuro-Oncology, 36, 219–229.CrossRefGoogle Scholar
  13. 13.
    Lawrence, T. S., Rehemtulla, A., Ng, E. Y., Wilson, M., Trosko, J. E., & Stetson, P. L. (1998). Cancer Research, 58, 2588–2593.Google Scholar
  14. 14.
    Hoganson, D. K., Batra, R. K., Olsen, J. C., & Boucher, R. C. (1996). Cancer Research, 56, 1315–1323.Google Scholar
  15. 15.
    Waldorf, A. R., & Polak, A. (1983). Antimicrobial Agents and Chemotherapy, 23, 79–85.CrossRefGoogle Scholar
  16. 16.
    Koechlin, B. A., Rubio, F., Palmer, S., Gabriel, T., & Duschinsky, R. (1966). Biochemical Pharmacology, 15, 435–446.CrossRefGoogle Scholar
  17. 17.
    Harris, B. E., Manning, B. W., Federle, T. W., & Diasio, R. B. (1986). Antimicrobial Agents and Chemotherapy, 29, 44–48.CrossRefGoogle Scholar
  18. 18.
    Sakai, T., Katsuragi, T., Tonomura, K., Nishiyama, T., & Kawamura, Y. (1985). Journal of Biotechnology, 2, 13–21.CrossRefGoogle Scholar
  19. 19.
    Nishiyama, T., Kawamura, Y., Kawamoto, K., Matsumura, H., Yamamoto, N., Ito, T., et al. (1985). Cancer Research, 45, 1753–1761.Google Scholar
  20. 20.
    Mullen, C. A., Kilstrup, M., & Blaese, R. M. (1992). Proceedings of the National Academy of Sciences of the United States of America, 89, 33–37.CrossRefGoogle Scholar
  21. 21.
    Yata, V. K., & Ghosh, S. S. (2011). Biotechnology Letters, 33, 153–157.CrossRefGoogle Scholar
  22. 22.
    Ireton, G. C., McDermott, G., Black, M. E., & Stoddard, B. L. (2002). Journal of Molecular Biology, 315, 687–697.CrossRefGoogle Scholar
  23. 23.
    Ireton, G. C., Black, M. E., & Stoddard, B. L. (2003). Structure, 11, 961–972.CrossRefGoogle Scholar
  24. 24.
    Ko, T. P., Lin, J. J., Hu, C. Y., Hsu, Y. H., Wang, A. H., & Liaw, S. H. (2003). The Journal of Biological Chemistry, 278, 19111–19117.CrossRefGoogle Scholar
  25. 25.
    Kievit, E., Bershad, E., Ng, E., Sethna, P., Dev, I., Lawrence, T. S., et al. (1999). Cancer Research, 59, 1417–1421.Google Scholar
  26. 26.
    Niculescu-Duvaz, I., & Springer, C. J. (2005). Molecular Biotechnology, 30, 71–88.CrossRefGoogle Scholar
  27. 27.
    Ghosh, S. S., Gopinath, P., & Ramesh, A. (2006). Applied Biochemistry and Biotechnology, 133(1), 9–29.CrossRefGoogle Scholar
  28. 28.
    Glorioso, J. C., De Luca, N. A., & Fink, D. J. (1995). Annual Review of Microbiology, 49, 675–710.CrossRefGoogle Scholar
  29. 29.
    Vile, R. G., Diaz, R. M., Miller, N., Tuszyanski, A., & Russell, S. G. (1995). Virology, 214, 307–313.CrossRefGoogle Scholar
  30. 30.
    Kremer, E. J., & Perricaudet, M. (1995). British Medical Bulletin, 51, 31–44.Google Scholar
  31. 31.
    Spooner, R. A., Deonarain, M. P., & Epenetos, A. A. (1995). Gene Therapy, 2, 173–180.Google Scholar
  32. 32.
    Erbs, P., Regulier, E., Kintz, J., Leroy, P., Poitevin, Y., Exinger, F., et al. (2000). Cancer Research, 60, 3813–3822.Google Scholar
  33. 33.
    Kanyama, H., Tomita, N., Yamano, T., Aihara, T., Miyoshi, Y., Ohue, M., et al. (2001). Cancer Research, 61, 14–18.Google Scholar
  34. 34.
    Miller, C. R., Williams, C. R., Buchsbaum, D. J., & Gillespie, G. Y. (2002). Cancer Research, 62, 773–780.Google Scholar
  35. 35.
    Verma, I. M., & Somia, N. (1997). Nature, 389, 239–242.CrossRefGoogle Scholar
  36. 36.
    El-Aneed, A. (2004). Journal of Controlled Release, 94, 1–14.CrossRefGoogle Scholar
  37. 37.
    Rols, M. P., Delteil, C., Golzio, M., Dumond, P., Cros, S., & Teissie, J. (1998). Nature Biotechnology, 16, 168–171.CrossRefGoogle Scholar
  38. 38.
    Haas, K., Wun-Chey, S., Javaherian, A., Li, Z., & Cline, H. T. (2001). Neuron, 29, 583–591.CrossRefGoogle Scholar
  39. 39.
    Dezawa, M., Takano, M., Negishi, H., Mo, X., Oshitari, T., & Sawada, H. (2002). Micron, 33, 1–6.CrossRefGoogle Scholar
  40. 40.
    Scheerlinck, J. Y., Karlis, J., Tjelle, T. E., Presidente, P. J. A., Mathiesen, I., & Newton, S. E. (2004). Vaccine, 22, 1820–1825.CrossRefGoogle Scholar
  41. 41.
    Zhi, D., Zhang, S., Wang, B., Zhao, Y., Yang, B., & Yu, S. (2010). Bioconjugate Chemistry, 21(4), 563–577.CrossRefGoogle Scholar
  42. 42.
    Lv, H., Zhang, S., Wang, B., Cui, S., & Yan, J. (2006). Journal of Controlled Release, 114(1), 100–109.CrossRefGoogle Scholar
  43. 43.
    Panyam, J., & Labhasetwar, V. (2003). Advanced Drug Delivery Reviews, 55, 329–352.CrossRefGoogle Scholar
  44. 44.
    Kaul, G., & Amiji, M. (2005). Pharmaceutical Research, 22, 951–961.CrossRefGoogle Scholar
  45. 45.
    Leng, A., Yang, J., Liu, T., Cui, J., Li, X. H., Zhu, Y., et al. (2011). Tumor Biology, 32, 1103–1111.CrossRefGoogle Scholar
  46. 46.
    Stegman, L. D., Rehemtulla, A., Beattie, B., Kievit, E., Lawrence, T. S., Blasberg, R. G., et al. (1999). Proceedings of the National Academy of Sciences of the United States of America, 96, 9821–9826.CrossRefGoogle Scholar
  47. 47.
    Pasanen, T., Hakkarainen, T., Timonen, P., Parkkinen, J., Tenhunena, Loimas, S., et al. (2003). International Journal of Molecular Medicine, 12, 525–531.Google Scholar
  48. 48.
    Bhaumik, S., Sekar, T. V., Depuy, J., Klimash, J., & Paulmurugan, R. (2011). Gene Therapy. doi: 10.1038/gt.2011.101.
  49. 49.
    Bhaumik, S. (2011). Current Pharmaceutical Biotechnology, 12(4), 497–507.CrossRefGoogle Scholar
  50. 50.
    Jaracz, S., Chen, J., Kuznetsova, L. V., & Ojima, I. (2005). Bioorganic & Medicinal Chemistry, 13, 5043–5054.CrossRefGoogle Scholar
  51. 51.
    Wallace, P. M., MacMaster, J. F., Smith, V. F., Kerr, D. E., Senter, P. D., & Cosand, W. L. (1994). Cancer Research, 54, 2719–2723.Google Scholar
  52. 52.
    Senter, P. D., Su, P. C., Katsuragi, T., Sakai, T., Cosand, W. L., Hellström, I., et al. (1991). Bioconjugate Chemistry, 2, 447–451.CrossRefGoogle Scholar
  53. 53.
    Li, C., Winnard, P. T., Jr., Takagi, T., Artemov, D., & Bhujwalla, Z. M. (2006). Journal of the American Chemical Society, 128, 15072–15073.CrossRefGoogle Scholar
  54. 54.
    Li, C., Penet, M. F., Winnard, P., Jr., Artemov, D., & Bhujwalla, Z. M. (2008). Clinical Cancer Research, 14, 515–522.CrossRefGoogle Scholar
  55. 55.
    Li, C., Wildes, F., Winnard, P., Jr., Artemov, D., Penet, M. F., & Bhujwalla, Z. M. (2008). Journal of Medicinal Chemistry, 51, 3572–3582.CrossRefGoogle Scholar
  56. 56.
    Kanai, F., Kawakami, T., Hamada, H., Sadata, A., Yoshida, Y., Tanaka, T., et al. (1998). Cancer Research, 58, 1946–1951.Google Scholar
  57. 57.
    Aghi, M., Kramm, C. M., Chou, T. C., Breakefield, X. O., & Chiocca, E. A. (1998). Journal of the National Cancer Institute, 90, 370–380.CrossRefGoogle Scholar
  58. 58.
    Mierzwa, M. L., Nyati, M. K., Morgan, M. A., & Lawrence, T. S. (2010). The Oncologist, 15, 372–381.CrossRefGoogle Scholar
  59. 59.
    Lawrence, T. S., Davis, M. A., & Maybaum, J. (1994). International Journal of Radiation Oncology, Biology, and Physics, 29, 519–523.CrossRefGoogle Scholar
  60. 60.
    Kambara, H., Tamiya, T., Ono, Y., Ohtsuka, S., Terada, K., Adachi, Y., et al. (2002). Cancer Gene Therapy, 9, 840–845.CrossRefGoogle Scholar
  61. 61.
    Gopinath, P., & Ghosh, S. S. (2008). Molecular Biotechnology, 39, 39–48.CrossRefGoogle Scholar
  62. 62.
    Gopinath, P., Gogoi, S. K., Chattopadhyay, A., & Ghosh, S. S. (2008). Nanotechnology, 19, 7.CrossRefGoogle Scholar
  63. 63.
    Kurozumi, K., Tamiya, T., Ono, Y., Otsuka, S., Kambara, H., Adachi, Y., et al. (2004). Journal of Neuro-Oncology, 66, 117–127.CrossRefGoogle Scholar
  64. 64.
    Lv, S. Q., Zhang, K. B., Zhang, E. E., Gao, F. Y., Yin, C. L., Huang, C. J., et al. (2009). Medical Science Monitor, 15, 13–20.Google Scholar
  65. 65.
    Moolten, F. L. (1986). Cancer Research, 46, 5276–5281.Google Scholar
  66. 66.
    Dilber, M. S., Abedi, M. R., Christensson, B., Bjorkstrand, B., Kidder, G. M., Naus, C. C., et al. (1997). Cancer Research, 57, 1523–1528.Google Scholar
  67. 67.
    Colombo, B. M., Benedetti, S., Ottolenghi, S., Mora, M., Pollo, B., Poli, G., et al. (1995). Human Gene Therapy, 6, 763–772.CrossRefGoogle Scholar
  68. 68.
    Stribbling, S. M., Friedlos, F., Martin, J., Davies, L., Spooner, R. A., Marais, R., et al. (2000). Human Gene Therapy, 11, 285–292.CrossRefGoogle Scholar
  69. 69.
    Trinh, Q. T., Austin, E. A., Murray, D. M., Knick, V. C., & Huber, B. E. (1995). Cancer Research, 55, 4808–4812.Google Scholar
  70. 70.
    Corban-Wilhelm, H., Hull, W. E., Becker, G., Bauder-Wüst, U., Greulich, D., & Debus, J. (2002). Gene Therapy, 9, 1564–1575.CrossRefGoogle Scholar
  71. 71.
    Dachs, G. U., Hunt, M. A., Syddall, S., Singleton, D. C., & Patterson, A. V. (2009). Molecules, 14(11), 4517–4545.CrossRefGoogle Scholar
  72. 72.
    Freytag, S. O., Stricker, H., Pegg, J., Paielli, D., Pradhan, D. G., Peabody, J., et al. (2003). Cancer Research, 63, 7497–7506.Google Scholar
  73. 73.
    Yata, V. K., Sen, K., Kumar, M. V. S., & Ghosh, S. S. (2011). Medicinal Chemistry Research. doi: 10.1007/s00044-011-9627-z.
  74. 74.
    Mahan, S. D., Ireton, G. C., Stoddard, B. L., & Black, M. E. (2004). Biochemistry, 43, 8957–8964.CrossRefGoogle Scholar
  75. 75.
    Stolworthy, T. S., Korkegian, A. M., Willmon, C. L., Ardiani, A., Cundiff, J., Stoddard, B. L., et al. (2008). Journal of Molecular Biology, 377, 854–869.CrossRefGoogle Scholar
  76. 76.
    Yata, V. K., & Ghosh, S. S. (2012). Materials Letters, 73, 209–211.CrossRefGoogle Scholar
  77. 77.
    Jaiswal, A., Chattopadhyay, A., & Ghosh, S. S. (2012). Materials Letters, 68, 261–264.CrossRefGoogle Scholar
  78. 78.
    Sanpui, P., Pandey, S. B., Chattopadhyay, A., & Ghosh, S. S. (2010). Materials Letters, 64, 2534–2537.CrossRefGoogle Scholar
  79. 79.
    Denny, W. A., & Wilson, W. R. (1998). Journal of Pharmacy and Pharmacology, 50, 387–394.CrossRefGoogle Scholar
  80. 80.
    Ipata, P. L., Marmocchi, F., Magni, G., Felicioli, R., & Polidoro, G. (1971). Biochemistry, 10, 4270–4276.CrossRefGoogle Scholar
  81. 81.
    Yao, L., Li, Y., Wu, Y., Liu, A., & Yan, H. (2005). Biochemistry, 44, 5940–5947.CrossRefGoogle Scholar
  82. 82.
    Yu, T. S., Kim, J. K., Katsuragi, T., Sakai, T., & Tonomura, K. (1991). Journal of Fermentation and Bioengineering, 72, 266–269.CrossRefGoogle Scholar
  83. 83.
    Jung, K., & Yu, T. S. (2004). Journal of Microbiology and Biotechnology, 14, 1182–1189.Google Scholar
  84. 84.
    West, T. P., Shanley, M. S., & O’Donovan, G. A. (1982). Biochimica et Biophysica Acta, 719, 251–258.CrossRefGoogle Scholar
  85. 85.
    Ireton, G. C., & Stoddard, B. L. (2004). Acta Crystallographica Section D: Biological Crystallography, 60, 601–605.CrossRefGoogle Scholar
  86. 86.
    Mahan, S. D., Ireton, G. C., Knoeber, C., Stoddard, B. L., & Black, M. E. (2004). Protein Engineering, Design & Selection, 17, 625–633.CrossRefGoogle Scholar
  87. 87.
    Korkegian, A., Black, M. E., Baker, D., & Stoddard, B. L. (2005). Science, 308, 857–860.CrossRefGoogle Scholar
  88. 88.
    Fuchita, M., Ardiani, A., Zhao, L., Serve, K., Stoddard, B. L., & Black, M. E. (2009). Cancer Research, 69, 4791–4799.CrossRefGoogle Scholar
  89. 89.
    Rogulski, K. R., Zhang, K., Kolozsvary, A., Kim, J. H., & Freytag, S. O. (1997). Clinical Cancer Research, 3, 2081–2088.Google Scholar
  90. 90.
    Khil, M. S., Kim, J. H., Mullen, C. A., Kim, S. H., & Freytag, S. O. (1996). Clinical Cancer Research, 2, 53–57.Google Scholar
  91. 91.
    Pederson, L. C., Buchsbaum, D. J., Vickers, S. M., Kancharla, S. R., Mayo, M. S., Curiel, D. T., et al. (1997). Cancer Research, 57, 4325–4332.Google Scholar
  92. 92.
    Kievit, E., Nyati, M. K., Ng, E., Stegman, L. D., Parsels, J., Ross, B. D., et al. (2000). Cancer Research, 60, 6649–6655.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Vinod Kumar Yata
    • 1
  • P. Gopinath
    • 2
  • Siddhartha Sankar Ghosh
    • 1
    • 3
    Email author
  1. 1.Department of BiotechnologyIndian Institute of Technology GuwahatiAssamIndia
  2. 2.Centre for NanotechnologyIndian Institute of Technology RoorkeeRoorkeeIndia
  3. 3.Centre for NanotechnologyIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations