Advertisement

Applied Biochemistry and Biotechnology

, Volume 167, Issue 8, pp 2341–2356 | Cite as

Expression and Characterization of Codon-Optimized Carbonic Anhydrase from Dunaliella Species for CO2 Sequestration Application

  • Bashistha Kumar Kanth
  • Kiha Min
  • Shipra Kumari
  • Hancheol Jeon
  • Eon Seon Jin
  • Jinwon LeeEmail author
  • Seung Pil PackEmail author
Article

Abstract

Carbonic anhydrases (CAs) have been given much attention as biocatalysts for CO2 sequestration process because of their ability to convert CO2 to bicarbonate. Here, we expressed codon-optimized sequence of α-type CA cloned from Dunaliella species (Dsp-aCAopt) and characterized its catalyzing properties to apply for CO2 to calcite formation. The expressed amount of Dsp-aCAopt in Escherichia coli is about 50 mg/L via induction of 1.0 mM isopropyl-β-d-thiogalactopyranoside at 20 °C (for the case of intact Dsp-aCA, negligible). Dsp-aCAopt enzyme shows 47 °C of half-denaturation temperature and show wide pH stability (optimum pH 7.6/10.0). Apparent values of K m and V max for p-nitrophenylacetate substrate are 0.91 mM and 3.303 × 10−5 μM min−1. The effects of metal ions and anions were investigated to find out which factors enhance or inhibit Dsp-aCAopt activity. Finally, we demonstrated that Dsp-aCAopt enzyme can catalyze well the conversion of CO2 to CaCO3, as the calcite form, in the Ca2+ solution [8.9 mg/100 μg (172 U/mg enzyme) with 10 mM of Ca2+]. The obtained expression and characterization results of Dsp-aCAopt would be usefully employed for the development of efficient CA-based system for CO2-converting/capturing processes.

Keywords

Alpha-carbonic anhydrase Codon optimization Dunaliella species Inhibitory effects CO2 sequestration 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (MEST) (NRF-C1ABA001-2010-0020501).

References

  1. 1.
    Puxty, G., Rowland, R., Allport, A., Yang, Q., Bown, M., Burns, R., Maeder, M., & Attalla, M. (2009). Carbon dioxide postcombustion capture: a novel screening study of the carbon dioxide absorption performance of 76 amines. Environmental Science & Technology, 43, 6427–6433.CrossRefGoogle Scholar
  2. 2.
    Veawab, A., Tontiwachwuthikul, P., & Chakma, A. (1999). Corrosion behavior of carbon steel in the CO2 absorption process using aqueous amine solutions. Industrial and Engineering Chemistry Research, 38, 3917–3924.CrossRefGoogle Scholar
  3. 3.
    Dawson, B., & Spannagle, M. (2009). The complete guide to climate change (1st ed.). New York: Routledge.Google Scholar
  4. 4.
    Lee, S. W., Park, S. B., Jeong, S. K., Limc, K. S., Lee, S. H., & Trachtenberg, M. C. (2010). On carbon dioxide storage based on biomineralization strategies. Micron, 41, 273–282.CrossRefGoogle Scholar
  5. 5.
    Frommer, W. B. (2010). CO2mmon Sense. Science, 327, 275–276.CrossRefGoogle Scholar
  6. 6.
    Figueroa, J. D., Fout, T., Plasynski, S., McIlvried, H., & Srivastava, R. D. (2008). Advances in CO2 capture technology—The U.S. department of energy's carbon sequestration program. International Journal of Green-House Gas Control, 2, 9–20.CrossRefGoogle Scholar
  7. 7.
    Puskas, L. G., Inui, M., Zahan, K., & Yukawa, H. (2000). A periplasmic, α-type carbonic anhydrase from Rhodopseudomonas palustris is essential for bicarbonate uptake. Microbiology, 146, 2957–2966.Google Scholar
  8. 8.
    Smith, K. S., & Ferry, J. G. (2000). Prokaryotic carbonic anhydrases. FEMS Microbiology Reviews, 24, 335–366.CrossRefGoogle Scholar
  9. 9.
    Tripp, B. C., Smith, K., & Ferry, J. G. (2001). Carbonic anhydrase: new insights for an ancient enzyme. Journal of Biological Chemistry, 276, 48615–48618.CrossRefGoogle Scholar
  10. 10.
    So, A. K., Espie, G. S., Williams, E. B., Shively, J. M., Heinhorst, S., & Cannon, G. C. (2004). A novel evolutionary lineage of carbonic anhydrase (ε class) is a component of the carboxysome shell. Journal of Bacteriology, 186, 623–630.CrossRefGoogle Scholar
  11. 11.
    Madern, D., Ebel, C., & Zaccai, G. (2000). Halophilic adaptation of enzymes. Extremophiles, 4, 91–98.CrossRefGoogle Scholar
  12. 12.
    Mevarech, M., Frolow, F., & Gloss, L. M. (2000). Halophilic enzymes: proteins with a grain of salt. Biophysical Chemistry, 86, 155–164.CrossRefGoogle Scholar
  13. 13.
    Szilagyi, F. A. U. A., & Zavodszky, P. (2000). Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure, 8, 493–504.CrossRefGoogle Scholar
  14. 14.
    Borowitzka, M. A., & Borowitzka, L. J. (1988). Micro-algal biotechnology. New York: Cambridge University Press.Google Scholar
  15. 15.
    Fisher, M., Pick, U., & Zamir, A. (1994). A salt-induced 60-kilodalton plasma membrane protein plays a potential role in the extreme halotolerance of the alga Dunaliella. Plant Physiology, 106, 1359–1365.Google Scholar
  16. 16.
    Sambrook, J., & Russel, D. W. (2001). Molecular cloning: A laboratory manual (3rd ed.). Cold Spring Harbor: Cold Spring Harbor Laboratory Press.Google Scholar
  17. 17.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.CrossRefGoogle Scholar
  18. 18.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  19. 19.
    Rickli, E. E., Ghazanfar, S. A. S., Gibbons, B. H., & Edsall, J. T. (1964). Carbonic anhydrases from human erythrocytes: preparation and properties of two enzymes. Journal of Biological Chemistry, 239, 1065–1078.Google Scholar
  20. 20.
    Verpoorte, J. A., Mehta, S., & Edsall, J. T. (1967). Esterase activities of human carbonic anhydrases B and C. Journal of Biological Chemistry, 242, 4221–4229.Google Scholar
  21. 21.
    Mirjafari, P., Asghari, K., & Mahinpey, N. (2007). Investigating the application of enzyme carbonic anhydrase for CO2 sequestration purposes. Industrial and Engineering Chemistry Research, 46, 921–926.CrossRefGoogle Scholar
  22. 22.
    Sharma, A., & Bhattacharya. (2010). Enhanced biomimetic sequestration of CO2 into CaCO3 using purified carbonic anhydrase from indigenous bacterial strains. Journal of Molecular Catalysis B: Enzymatic, 67, 122–128.CrossRefGoogle Scholar
  23. 23.
    Lineweaver, H., & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society, 57, 658–666.CrossRefGoogle Scholar
  24. 24.
    Hakan, S., & Beydemir, S. (2012). The impact of heavy metals on the activity of carbonic anhydrase from rainbow trout (Oncorhynchus mykiss) kidney. Toxicology and Industrial Health, 28, 296–305.CrossRefGoogle Scholar
  25. 25.
    Ceyhun, S. B., Sentürk, M., Yerlikaya, Emrah, Erdogan, O., Küfrevioglu, Ö. I., & Ekinci, D. (2011). Purification and characterization of carbonic anhydrase from the teleost fish Dicentrarchus labrax (European seabass) liver and toxicological effects of metals on enzyme activity. Environmental Toxicology and Pharmacology, 32, 69–74.CrossRefGoogle Scholar
  26. 26.
    Ekinci, D., Ceyhun, S. B., Sentürk, M., Erdem, D., Küfrevioglu, Ö. I., & Supuran, C. T. (2011). Characterization and anions inhibition studies of an α-carbonic anhydrase from the teleost fish Dicentrarchus labrax. Bioorganic & Medicinal Chemistry, 19, 744–748.CrossRefGoogle Scholar
  27. 27.
    Kupriyanova, E., Villarejo, A., Markelova, A., Gerasimenko, L., Zavarzin, G., Samuelsson, G., Los, D. A., & Pronina, N. (2007). Extracellular carbonic anhydrases of the stromatolite-forming cyanobacterium Microcoleus chthonoplastes. Microbiology, 153, 1149–1156.CrossRefGoogle Scholar
  28. 28.
    Stahler, N. F., Ganter, L., Katherin, L., Manfred, K., & Stephen, B. (2005). Mutational analysis of the Helicobacter pylori carbonic anhydrases. FEMS Immunology and Medical Microbiology, 44, 183–189.CrossRefGoogle Scholar
  29. 29.
    Innocenti, A., Muhlschegel, F. A., Hall, R. A., Steegborn, C., Scozzafava, A., & Supuran, C. T. (2008). Carbonic anhydrase inhibitors: inhibition of the β-class enzymes from the fungal pathogens Candida albicans and Cryptococcus neoformans with simple anions. Bioorganic & Medicinal Chemistry Letters, 18, 5066–5070.CrossRefGoogle Scholar
  30. 30.
    Lindskog, S. (1997). Structure and mechanism of carbonic anhydrase. Pharmacology and Therapeutics, 74, 1–20.CrossRefGoogle Scholar
  31. 31.
    Kuhad, R. C., Chopra, P., Battan, B., Kapoor, M., & Kuhar, S. (2006). Production, partial purification and characterization of a thermo-alkali stable xylanase from Bacillus sp. RPP-1. Indian Journal of Microbiology, 46, 13–23.Google Scholar
  32. 32.
    Sharma, A., Bhattacharya, A., & Singh, S. (2009). Purification and characterization of an extracellular carbonic anhydrase from Pseudomonas fragi. Process Biochemistry, 44, 1293–1297.CrossRefGoogle Scholar
  33. 33.
    de Leeuw, N. H., & Parker, S. C. (1998). Surface structure and morphology of calcium carbonate polymorphs calcite, aragonite, and vaterite: an atomistic approach. Journal of Physical Chemistry B, 102(384), 2914–2922.CrossRefGoogle Scholar
  34. 34.
    Ouhenia, S., Chateigner, D., Belkhir, M. A., Guilmeau, E., & Krauss, C. (2008). Synthesis of calcium carbonate polymorphs in the presence of polyacrylic acid. Journal of Crystal Growth, 310, 2832–2841.CrossRefGoogle Scholar
  35. 35.
    Li, W., Liu, L., Chen, W., Yu, L., Li, W., & Yu, H. (2010). Calcium carbonate precipitation and crystal morphology induced by microbial carbonic anhydrase and other biological factors. Process Biochemistry, 45, 1017–1021.CrossRefGoogle Scholar
  36. 36.
    Vinoba, M., Bhagiyalakshmi, M., Jeong, S. K., Yoon, Y. I., & Nam, S. C. (2012). Carbonic anhydrase conjugated to nanosilver immobilized onto mesoporous SBA-15 for sequestration of CO2. Journal of Molecular Catalysis B: Enzymatic, 75, 60–67.CrossRefGoogle Scholar
  37. 37.
    Kim, I. G., Jo, B. H., Kang, D. G., Kim, C. S., Choi, Y. S., & Cha, H. J. (2012). Biomineralization-based conversion of carbon dioxide to calcium carbonate using recombinant carbonic anhydrase. Chemosphere, 87, 1091–1096.CrossRefGoogle Scholar
  38. 38.
    Garcia-Carmona, J., Morales, J. G., & Clemente, R. R. (2003). Morphological control of precipitated calcite obtained by adjusting the electrical conductivity in the Ca(OH)2–H2O–CO2 system. Journal of Crystal Growth, 249, 561–571.CrossRefGoogle Scholar
  39. 39.
    Vinoba, M., Kim, D. H., Lim, K. S., Jeong, S. K., Lee, S. W., & Alagar, M. (2011). Biomimetic sequestration of CO2 and reformation to CACO3 using bovine carbonic anhydrase immobilized on SBA-15. Energy & Fuels, 25, 438–445.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Bashistha Kumar Kanth
    • 1
  • Kiha Min
    • 1
  • Shipra Kumari
    • 1
  • Hancheol Jeon
    • 2
  • Eon Seon Jin
    • 2
  • Jinwon Lee
    • 3
    Email author
  • Seung Pil Pack
    • 1
    Email author
  1. 1.Department of Biotechnology and BioinformaticsKorea UniversityJochiwonSouth Korea
  2. 2.Department of Life ScienceHanyang UniversitySeoulSouth Korea
  3. 3.Department of Chemical and Biomolecular EngineeringSogang UniversitySeoulSouth Korea

Personalised recommendations