Applied Biochemistry and Biotechnology

, Volume 167, Issue 3, pp 662–676 | Cite as

Characterization of Xerophytic Thermophilic Laccase Exhibiting Metal Ion-Dependent Dye Decolorization Potential

Article

Abstract

Five laccase enzyme isoforms were isolated and purified to homogeneity from the cladodes of xerophytic Cereus pterogonus and Opuntia vulgaris plant species. Catalytic activity of all isoforms was enhanced 40 % by 1 mM Cu2+ and 1 mM Mn2+, whereas the activity was inhibited 100 % by 10 mM Fe2+. Enzyme was found stable in 4 M urea and exhibited inactivity of 50 % in 8 M urea concentration. Ethylenediaminetetraacetic acid and cysteine-HCl were able to completely inhibit the enzyme activity at 1 mM and 100 μM, respectively. Preheated enzyme samples showed enhanced and stable catalytic activity in the presence of divalent cations over a period of 30 min compared with controls. In the presence of metal ions (1 mM Cu2+ and 1 mM Mn2+), the preheated enzyme forms (60–90 °C) achieved 97 % of Malachite green and 98.75 % of Indigo blue (both at 2 %, w/v) dye decolorization in 12 h.

Keywords

Laccase Malachite green Indigo blue Dye decolorization Thermostable xerophyte 

References

  1. 1.
    Kumar, G. N., & Srikumar, K. (2011). Thermophilic laccase from xerophyte species Opuntia vulgaris. Biomedical Chromatography, 25, 707–711.CrossRefGoogle Scholar
  2. 2.
    Kumar, G. N., & Srikumar, K. (2012). Isolation, purification, and characterization of thermophilic laccase from the xerophyte Cereus pterogonus. Chemistry of Natural Compounds (in press).Google Scholar
  3. 3.
    Galai, S., Limam, F., & Marzouki, M. N. (2009). A new Stenotrophomonas maltophilia strain producing laccase. Use in decolorization of synthetic dyes. Applied Biochemistry and Biotechnology, 158, 416–431.CrossRefGoogle Scholar
  4. 4.
    Fang, H., Huang, J., Chen, Z., & Ding, L. Y. (2009). Effect of buffer solutions and metal ions on the laccase activity. Journal of Wuhan University of Technology, 31, 27–30.Google Scholar
  5. 5.
    Salony, J. L., Garg, N., Baranwal, R., Chhabra, M., Mishra, S., Chaudhuri, T. K., et al. (2008). Laccase of Cyathus bulleri: structural, catalytic characterization and expression in Escherichia coli. Biochimica et Biophysica Acta (BBA)-Proteins & Proteomics, 1784, 259–268.CrossRefGoogle Scholar
  6. 6.
    Fu, Y., & Viraraghavan, T. (2002). Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Advances in Environmental Research, 7, 239–247.CrossRefGoogle Scholar
  7. 7.
    Daneshvar, N., Ayazloo, M., Khataee, A. R., & Pourhassan, M. (2007). Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresource Technology, 98, 1176–1182.CrossRefGoogle Scholar
  8. 8.
    Gupta, V. K., Mittal, A., Krishnan, L., & Gajbe, V. (2004). Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash. Separation and Purification Technology, 40, 87–96.CrossRefGoogle Scholar
  9. 9.
    Rao, K. V. K. (1995). Inhibition of DNA synthesis in primary rat hepatocyte cultures by malachite green: a new liver tumor promoter. Toxicology Letters, 81, 107–113.CrossRefGoogle Scholar
  10. 10.
    Srividya, N., Paramasivan, G., Seetharaman, K., & Ramamurthy, P. (1994). Two-step reduction of Indigo Carmine by dithionite: a stopped-flow study. Journal of Chemical Society Faraday Transaction, 90, 2525–2530.CrossRefGoogle Scholar
  11. 11.
    Solís-Oba, M., Eloy-Juárez, M., Teutli, M., Nava, J. L., & González, I. (2009). (pp. 275–282). Comparison of advanced techniques for the treatment of an indigo model solution: electro incineration, chemical coagulation and enzymatic. Mexico: Revista Mexicana de Ingeniería Química.Google Scholar
  12. 12.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  13. 13.
    Kumari, H. L., & Sirsi, M. (1972). Purification and properties of laccase from Ganoderma lucidum. Archiv für Mikrobiologie, 84, 350–357.CrossRefGoogle Scholar
  14. 14.
    Murugesan, K., Kim, Y. M., Jeon, J. R., & Chang, Y. S. (2009). Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum. Journal of Hazardous Materials, 168, 523–529.CrossRefGoogle Scholar
  15. 15.
    Elvehjem, C. A. (1930). Factors affecting the catalytic action of copper in the oxidation of cysteine. Biochemical Journal, 24, 415–426.Google Scholar
  16. 16.
    Bruning, W., & Holtzer, A. (1961). The effect of urea on hydrophobic bonds: the critical micelle concentration of n-dodecyltrimethylammonium bromide in aqueous solutions of urea. Journal of the American Chemical Society, 83, 4865–4866.CrossRefGoogle Scholar
  17. 17.
    Pan, J. B., Zhao, M., Lu, L., Du, M. H., Li, G. F., Li, J., et al. (2011). Isolation and characterization of laccase activity in a novel Bacillus amyloliquefaciens LCO2. Advances in Materials Research, 183–185, 773–777.CrossRefGoogle Scholar
  18. 18.
    Miyazaki, K. (2005). A hyperthermophilic laccase from Thermus thermophilus HB27. Extremophiles, 9, 415–425.CrossRefGoogle Scholar
  19. 19.
    Rasera, K., Ferla, J., Dillon, A. J. P., Riveiros, R., Riveiros, R., & Zeni, M. (2009). Immobilization of laccase from Pleurotus sajor-caju in polyamide membranes. Desalination, 246, 284–288.Google Scholar
  20. 20.
    Khattri, S. D., & Singh, M. K. (1999). Colour removal from dye wastewater using sugar cane dust as an adsorbent. Adsorption Science and Technology, 17, 269–282.Google Scholar
  21. 21.
    Srivastava, S., Sinha, R., & Roy, D. (2004). Toxicological effects of malachite green. Aquatic Toxicology, 66, 319–329.CrossRefGoogle Scholar
  22. 22.
    Ali, H., Ahmad, W., & Haq, T. (2009). Decolorization and degradation of malachite green by Aspergillus flavus and Alternaria solani. African Journal of Biotechnology, 8, 1574–1576.Google Scholar
  23. 23.
    Hameed, B. H., & Lee, T. W. (2009). Degradation of malachite green in aqueous solution by Fenton process. Journal of Hazardous Materials, 164, 468–472.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular Biology, School of Life SciencesPondicherry UniversityPuducherryIndia

Personalised recommendations