Advertisement

Applied Biochemistry and Biotechnology

, Volume 167, Issue 7, pp 1890–1906 | Cite as

Mushroom Polysaccharides and Lipids Synthesized in Liquid Agitated and Static Cultures. Part II: Study of Volvariella volvacea

  • Panagiota Diamantopoulou
  • Seraphim Papanikolaou
  • Eleni Katsarou
  • Michael Komaitis
  • George Aggelis
  • Antonios PhilippoussisEmail author
Article

Abstract

Volvariella volvacea strains were studied in relation with their ability to produce biomass, lipids and polysaccharides. Firstly, screening of four strains (AMLR 188, 190, 191 and 192) was performed in agar cultures, where the mycelial growth rate of the strains was measured, and in static liquid cultures, where the production of biomass, the biosynthesis of total cellular lipids and the consumption of glucose were monitored. For all strains, biomass production was significant (13–15 g l−1) and total lipid in dry weight (%, w/w) ranged from 3 to 12 %. Afterwards, a detailed kinetic analysis of mycelial biomass, extra- and intra- cellular polysaccharides (EPS, IPS, respectively) as well as lipid production by a V. volvacea selected strain was conducted in submerged static and agitated cultures. Maximum values of 15 g l−1 biomass, ∼1.0 g l−1 EPS and 5.5 g l−1 IPS were recorded. Agitation did not have severe impact on biomass, EPS and IPS production, but it increased total lipid in dry weight quantities. EPS, IPS and lipid in dry weight values decreased with time. Glucose was the major cellular carbohydrate detected. Total fatty acid analysis of cellular lipids was performed for all V. volvacea strains and linoleic acid Δ9,12C18:2 was predominant. Neutral lipids constituted the major fraction of cellular lipids, but their quantity decreased as fermentation proceeded. Phospholipids were the most saturated lipid fraction.

Keywords

Volvariella volvacea Biomass Cellular lipids Polysaccharides Submerged cultures 

References

  1. 1.
    Pandey, A., Soccol, C. R., Nigam, P., Soccol, V. T., Vandenberghe, L. P. S., & Mohan, R. (2000). Biotechnological potential of agro-industrial residues. II. Cassava bagasse. Bioresource Technology, 74, 81–87.CrossRefGoogle Scholar
  2. 2.
    Fang, Q.-H., & Zhong, J.-J. (2002). Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochemistry, 37, 769–774.CrossRefGoogle Scholar
  3. 3.
    Tang, Y.-J., Zhu, L.-W., Li, H.-M., & Li, D.-S. (2007). Submerged culture of mushrooms in bioreactors—challenges, current state-of-the-art, and future prospects. Food Technology and Biotechnology, 45, 221–229.Google Scholar
  4. 4.
    Zhong, J. J., & Tang, Y. J. (2004). Submerged cultivation of medicinal mushrooms for production of valuable bioactive metabolites. Advances in Biochemical Engineering/Biotechnology, 87, 25–59.CrossRefGoogle Scholar
  5. 5.
    Israilides, C., Kletsas, D., Arapoglou, D., Philippoussis, A., Pratsinis, H., Ebringerova, A., Hribalova, V., & Harding, S. E. (2008). In vitro cytostatic and immunomodulatory properties of the medicinal mushroom Lentinula edodes. Phytomedicine, 15, 512–519.CrossRefGoogle Scholar
  6. 6.
    Dimou, D. M., Georgala, A., Komaitis, M., & Aggelis, G. (2002). Mycelial fatty acid composition of Pleurotus spp. and its application in the intrageneric differentiation. Mycological Research, 106, 925–929.CrossRefGoogle Scholar
  7. 7.
    Kavishree, S., Hemavathy, J., Lokesh, B. R., Shashirekha, M. N., & Rajarathan, S. (2008). Fat and fatty acids of Indian edible mushrooms. Food Chemistry, 106, 597–602.CrossRefGoogle Scholar
  8. 8.
    Smiderle, F. R., Olsen, L. M., Ruthes, A. C., Czelusniak, P. A., Santana-Filho, A. P., Sassaki, G. L., Gorin, P. A. J., & Iacomini, M. (2012). Exopolysaccharides, proteins and lipids in Pleurotus pulmonarius submerged culture using different carbon sources. Carbohydrate Polymers, 87(1), 368–377.CrossRefGoogle Scholar
  9. 9.
    Chang, S. T. (2008). Overview of mushroom cultivation and utilization as functional foods. In P. C. K. Cheung (Ed.), Mushrooms as functional foods (pp. 1–34). New Jersey: Wiley.CrossRefGoogle Scholar
  10. 10.
    Diamantopoulou, P., Papanikolaou, S., Kapoti, M., Komaitis, M., Aggelis, G., Philippoussis, A. (2012). Mushroom polysaccharides and lipids synthesized in liquid agitated and static cultures. Part I: Screening various mushroom species. Applied Biochemistry and Biotechnology. doi: 10.1007/s12010-012-9713-9.
  11. 11.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.CrossRefGoogle Scholar
  12. 12.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  13. 13.
    Liang, Y., Sarkany, N., Cui, Y., & Blackburn, J. W. (2010). Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microagal fermentation. Bioresource Technology, 101, 6745–6750.CrossRefGoogle Scholar
  14. 14.
    Fakas, S., Papanikolaou, S., Galiotou-Panayotou, M., Komaitis, M., & Aggelis, G. (2008). Organic nitrogen of tomato waste hydrolysate enhances glucose uptake and lipid accumulation in Cunninghamella echinulata. Journal of Applied Microbiology, 105, 1062–1070.CrossRefGoogle Scholar
  15. 15.
    Chang, S. T., Miles, P. G., & Wai, C. C. (1981). A study on monosporous isolates of Volvariella volvacea. Mushroom Science, XI, 603–621.Google Scholar
  16. 16.
    Ahlawat, O. P., Pardeep, G., & Dhar, B. L. (2008). Profile of the extracellular lignocellulolytic enzymes activities as a tool to select the promising strains of Volvariella volvacea (Bull.ex Fr.) Sing. Indian Journal of Microbiology, 48, 389–396.CrossRefGoogle Scholar
  17. 17.
    Zervakis, G., Philippoussis, A., Ioannidou, S., & Diamantopoulou, P. (2001). Mycelium growth kinetics and oprimal temperatues conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiologica, 46(3), 231–234.CrossRefGoogle Scholar
  18. 18.
    Tonial, T. M., Pandey, A., Chiarella, M. D., & Soccol, C. R. (2000). Cultivation of Volvariella volvacea to produce biomass from potato and cassava processing residues by submerged fermentation. Indian Journal of Microbiology, 40(1), 35–40.Google Scholar
  19. 19.
    Feng, Y.-L., Li, W.-Q., Wu, X.-Q., Cheng, J.-W., & Ma, S.-Y. (2010). Statistical optimization of media for mycelial growth and exopolysaccharide production by Lentinus edodes and a kinetic model study of two growth morphologies. Biochemical Engineering Journal, 49, 104–112.CrossRefGoogle Scholar
  20. 20.
    Li, Y., Cho, K. Y., Wu, Y. Z., & Nair, N. G. (1992). The effect of lipids and temperature on the physiology and growth of Volvariella volvacea. World Journal of Microbiology and Biotechnology, 8, 621–626.CrossRefGoogle Scholar
  21. 21.
    Akinyele, B. J., & Adetuyi, F. C. (2005). Effect of agrowastes, pH and temperature variation on growth of Volvariella volvacea. African Journal of Biotechnology, 4, 1390–1395.Google Scholar
  22. 22.
    Jonathan, S. G., Fasidi, I. O., & Ajayi, E. J. (2004). Physico-chemical studies on Volvariella esculenta (Mass) Singer, a Nigerian edible fungus. Food Chemistry, 85, 339–342.CrossRefGoogle Scholar
  23. 23.
    Maziero, R., Cavazzoni, V., & Bononi, V. L. R. (1999). Screening of Basidiomycetes for the production of exopolysaccharide and biomass in submerged culture. Revista de Microbiologia, 30, 77–84.CrossRefGoogle Scholar
  24. 24.
    Tang, Y.-J., & Zhong, J.-J. (2002). Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme and Microbial Technology, 31, 20–28.CrossRefGoogle Scholar
  25. 25.
    Tang, Y.-J., Zhu, L.-L., Li, D.-S., Mi, Z.-Y., & Li, H.-M. (2008). Significance of inoculation density and carbon source on the mycelial growth and Tuber polysaccharides production by submerged fermentation of Chinese truffle Tuber sinense. Proceedings of Biochemistry, 43, 576–586.CrossRefGoogle Scholar
  26. 26.
    Xiao, J. H., Chen, D. X., Xiao, Y., Liu, Z. L., Wan, W. H., Fang, N., Tan, B. B., Liang, Z. Q., & Liu, A. I. (2004). Optimization of submerged culture conditions for mycelial polysaccharide production in Cordyceps pruinosa. Process Biochemistry, 39, 2241–2247.CrossRefGoogle Scholar
  27. 27.
    Stajić, M., Glamočlija, J., Maksimović, V., Vukojević, J., Simonić, J., & Zervakis, G. (2011). A comparative study of the potential of polysaccharide production and intracellular sugar composition within Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.) P. Karst. (Aphyllophoromycetideae). International Journal of Medicinal Mushrooms, 13(2), 153–158.CrossRefGoogle Scholar
  28. 28.
    Lee, W. Y., Park, Y., Ahn, J. K., Hyeon, K., & Park, S. Y. (2007). Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum. Enzyme and Microbial Technology, 40, 249–254.CrossRefGoogle Scholar
  29. 29.
    Zhou, Y., Hong-bo, S., & Chen, De-yu. (2009). Effects of organic nitrogen and carbon sources on mycelial growth and polysaccharides production and their optimization in the submerged culture of Grifola umbellate, a Chinese medicinal herb. African Journal of Biotechnology, 8(20), 5202–5214.Google Scholar
  30. 30.
    Babitskaya, V. G., Shcherba, V. V., Puchkova, T. A., & Smirnov, D. A. (2005). Polysaccharides of Ganoderma lucidum: factors affecting their production. Applied Biochemistry and Microbiology, 41, 169–173.CrossRefGoogle Scholar
  31. 31.
    Mau, J.-L., Chyau, C. C., Li, J.-Y., & Tseng, Y.-H. (1997). Flavor compounds in straw mushrooms Volvariella volvacea harvested at different stages of maturity. Journal of Agricultural and Food Chemistry, 45, 4726–4729.CrossRefGoogle Scholar
  32. 32.
    Philippoussis, A., Zervakis, G., & Diamantopoulou, P. (2001). Bioconversion of lignocellulosic wastes through the cultivation of the edible mushrooms Agrocybe aegerita Volvariella volvacea and Pleurotus spp. World Journal of Microbiology and Biotechnology, 17(2), 191–200.CrossRefGoogle Scholar
  33. 33.
    Kües, U. (2000). Life history and developmental process in the basidiomycete Coprinus cinereus. Microbiology and Molecular Biology Reviews, 64(2), 316–353.CrossRefGoogle Scholar
  34. 34.
    Li, Y., Cho, K. Y., Wu, Y. Z., & Nair, N. G. (1992). The effect of lipids and temperature on the physiology and growth of Volvariella volvacea. World Journal of Microbiology and Biotechnology, 8(6), 621–626.CrossRefGoogle Scholar
  35. 35.
    Tsai, S.-Y., Weng, C.-C., Huang, S.-J., Chen, C.-C., & Mau, J.-L. (2006). Nonvolatile taste components of Grifola frondosa, Morchella esculenta and Termitomyces albumyces mycelia. LWT, 39, 1066–1077.CrossRefGoogle Scholar
  36. 36.
    Tseng, H.-Y., Lee, L.-Y., Li, R.-C., & Mau, J.-L. (2005). Non-volatile flavour components of Ganoderma tsugae. Food Chemistry, 90, 409–425.CrossRefGoogle Scholar
  37. 37.
    Chang, H.-L., Chao, G.-R., Chen, C.-C., & Mau, J.-L. (2001). Non-volatile taste components of Agaricus blasei, Antrodia campgorata and Cordyceps militaris mycelia. Food Chemistry, 27, 87–158.Google Scholar
  38. 38.
    Cheung, P. C.-K. (1997). Chemical evaluation of some lesser known edible mushroom mycelia produced in submerged culture from soy milk waste. Food Chemistry, 60(1), 61–65.CrossRefGoogle Scholar
  39. 39.
    Nair, N. G., Song, C. H., Jiang, J. H., Vine, J. H., Tattum, B., & Cho, K. Y. (1989). Lipid profile of Pleurotus sajor-caju. Annals of Applied Biology, 114, 167–176.CrossRefGoogle Scholar
  40. 40.
    Nair, N. G., Holley, M. P., Song, C. H., & Cho, K. Y. (1990). Lipid metabolism of Pleurotus sajor-caju. Annals of Applied Biology, 116, 455–462.CrossRefGoogle Scholar
  41. 41.
    Pedneault, K., Angers, P., Gosselin, A., & Russell, J. T. (2008). Fatty acid profiles and neutral lipids of ten species of higher basidiomycetes indigenous to eastern Canada. Mycological Research, 112, 1428–1434.CrossRefGoogle Scholar
  42. 42.
    Pedneault, K., Angers, P., Gosselin, A., & Tweddell, R. J. (2006). Fatty acid composition of lipids from mushrooms belonging to the family Boletaceae. Mycological Research, 110, 1179–1183.CrossRefGoogle Scholar
  43. 43.
    Dembitsky, V. M., Shubina, E. E., & Kashin, A. G. (1992). Phospholipid and fatty acid composition of some basidiomycetes. Phytochemistry, 3(3), 845–849.Google Scholar
  44. 44.
    Yilmaz, N., Solmaz, M., Türkekul, I., & Elmastaş, M. (2006). Fatty acid composition in some wild edible mushrooms growing in the middle Black Sea region of Turkey. Food Chemistry, 99, 168–174.CrossRefGoogle Scholar
  45. 45.
    André, A., Diamantopoulou, P., Philippoussis, A., Sarris, D., Komaitis, M., & Papanikolaou, S. (2010). Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Industrial Crops and Products, 31, 407–416.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Panagiota Diamantopoulou
    • 1
  • Seraphim Papanikolaou
    • 2
  • Eleni Katsarou
    • 1
  • Michael Komaitis
    • 2
  • George Aggelis
    • 3
  • Antonios Philippoussis
    • 1
    Email author
  1. 1.Laboratory of Edible Fungi, Institute of Technology of Agricultural ProductsNational Agricultural Research Foundation (NAGREF)AthensGreece
  2. 2.Department of Food Science and TechnologyAgricultural University of AthensAthensGreece
  3. 3.Unit of Microbiology, Division of Genetics, Cell and Development Biology, Department of BiologyUniversity of PatrasPatrasGreece

Personalised recommendations