Applied Biochemistry and Biotechnology

, Volume 167, Issue 3, pp 536–551 | Cite as

Mushroom Polysaccharides and Lipids Synthesized in Liquid Agitated and Static Cultures. Part I: Screening Various Mushroom Species

  • Panagiota Diamantopoulou
  • Seraphim Papanikolaou
  • Maria Kapoti
  • Michael Komaitis
  • George Aggelis
  • Antonios PhilippoussisEmail author


The effect of four synthetic media containing glucose (initial concentration 30 g l−1) on mycelial growth, exopolysaccharides (EPS) and cellular lipids production was examined in 11 mushroom species after 12 and 16 days of culture in static- and shake-flasks. Fatty acid analysis of cellular lipids produced was also performed. Agitation had a positive effect on biomass production, glucose consumption and lipid biosynthesis. Media that favoured the production of biomass were not suitable for EPS biosynthesis and vice versa. Biomass values varied from ∼1.0 g l−1 (Lentinula edodes) to ∼19 g l−1 (Pleurotus ostreatus), while the highest EPS quantity achieved ranged between 1.6 and 1.8 g l−1 (for Ganoderma lucidum and L. edodes, respectively). Quantities of total cellular lipids varied between 2.5 and 18.5 % w/w, in dry mycelial mass for the fungi tested. Lipid in dry weight values were influenced by the medium composition. Cellular lipids presented noticeable quantities of poly-unsaturated fatty acids like linoleic acid. Compared to most of the mushrooms tested, lipids of Volvariella volvacea were more saturated. The ability of several mushroom species of our study to produce in notable quantities the above-mentioned added-value compounds renders these fungi worthy for further investigations.


Ascomycetous Basidiomycetous Biomass Cellular lipids Exopolysaccharides Submerged cultures 


  1. 1.
    Chang, S. T., & Miles, P. G. (2004). Mushrooms: cultivation, nutritional value, medicinal effect and environmental impact (2nd ed.). Boca Raton, FL: CPR.CrossRefGoogle Scholar
  2. 2.
    Philippoussis, A. (2009). Production of mushrooms using agro-industrial residues as substrates. In (Sing Nigam, P. and Pandey, A., (eds) Biotechnology for Agro-industrial Residues Processing. Springer, pp. 163–196.Google Scholar
  3. 3.
    Mizuno, T. (1995). Bioactive biomolecules of mushrooms: food functions and medicinal effects of mushroom fungi. Food Reviews International, 11, 7–21.Google Scholar
  4. 4.
    Wasser, S., & Weis, A. (1999). Medicinal properties of substances occurring in higher basidiomycetes mushrooms: current perspectives (review). International Journal of Medicinal Mushrooms, 1, 31–61.Google Scholar
  5. 5.
    Tang, Y.-J., & Zhong, J.-J. (2002). Fed-batch fermentation of Ganoderma lucidum for hyperproduction of polysaccharide and ganoderic acid. Enzyme and Microbial Technology, 31, 20–28.CrossRefGoogle Scholar
  6. 6.
    Manu-Tawiah, W., & Martin, A. M. (1987). Chemical composition of Pleurotus ostreatus mycelial biomass. Food Microbiology, 4, 303–310.CrossRefGoogle Scholar
  7. 7.
    André, A., Diamantopoulou, P., Philippoussis, A., Sarris, D., Komaitis, M., & Papanikolaou, S. (2010). Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Industrial Crops and Products, 31, 407–416.CrossRefGoogle Scholar
  8. 8.
    Babitskaya, V. G., Shcherba, V. V., Puchkova, T. A., & Smirnov, D. A. (2005). Polysaccharides of Ganoderma lucidum: factors affecting their production. Applied Biochemistry and Microbiology, 41, 169–173.CrossRefGoogle Scholar
  9. 9.
    Wu, J., Ding, Z.-Y., & Zhang, K.-C. (2006). Improvement of exopolysaccharide production by macro-fungus Auricularia auricula in submerged culture. Enzyme and Microbial Technology, 39, 743–749.CrossRefGoogle Scholar
  10. 10.
    Xu, H., Sun, L.-P., Shi, Y.-Z., Wu, Y.-H., Zhang, B., & Zhao, D.-O. (2008). Oprimization of cultivation conditions for extracellular polysaccharide and mycelium biomass by Morchella esculenta As51620. Biochemical Engineering Journal, 39, 66–73.CrossRefGoogle Scholar
  11. 11.
    Elisashvili, V. I., Kachlishvili, E. T., & Wasser, S. P. (2009). Carbon and nitrogen source effects on basidiomycetes exopolysaccharide production. Applied Biochemistry and Microbiology, 45(5), 531–535.CrossRefGoogle Scholar
  12. 12.
    Meng, F., Liu, X., Jia, L. L., Song, Z., Deng, P., & Fan, K. (2010). Optimization for the production of exopolysaccharides from Morchella esculenta SO-02 in submerged culture and its antioxidant activities in vitro. Carbohydrate Polymers, 79, 700–704.CrossRefGoogle Scholar
  13. 13.
    Gern, R. M. M., Wisbeck, E., Rampinelli, J. R., Ninow, J. L., & Furlan, S. A. (2008). Alternative medium for production of Pleurotus ostreatus biomass and potential antitumor polysaccharides. Bioresource Technology, 99, 76–82.CrossRefGoogle Scholar
  14. 14.
    Fang, Q.-H., & Zhong, J.-J. (2002). Effect of initial pH on production of ganoderic acid and polysaccharide by submerged fermentation of Ganoderma lucidum. Process Biochemistry, 37, 769–774.CrossRefGoogle Scholar
  15. 15.
    Yang, F.-C., & Liau, C.-B. (1998). The influence of environmental conditions on polysaccharide formation by Ganoderma lucidum in submerged cultures. Process Biochemistry, 33(5), 547–553.CrossRefGoogle Scholar
  16. 16.
    Dimou, D. M., Georgala, A., Komaitis, M., & Aggelis, G. (2002). Mycelial fatty acid composition of Pleurotus spp. and its application in the intrageneric differentiation. Mycological Research, 106, 925–929.CrossRefGoogle Scholar
  17. 17.
    Kavishree, S., Hemavathy, J., Lokesh, B. R., Shashirekha, M. N., & Rajarathan, S. (2008). Fat and fatty acids of Indian edible mushrooms. Food Chemistry, 106, 597–602.CrossRefGoogle Scholar
  18. 18.
    Ribeiro, B., dePinho, P. G., Andrade, P. B., Batista, P., & Valentão, P. (2009). Fatty acid composition of wild edible mushrooms species: a comparative study. Microchemical Journal, 93(1), 29–35.CrossRefGoogle Scholar
  19. 19.
    Kim, S. W., Hwang, H. J., Park, J. P., Cho, Y. J., Song, C. H., & Yun, J. W. (2002). Mycelial growth and exo-biopolymer production by submerged culture of various edible mushrooms under different media. Letters in Applied Microbiology, 34, 56–61.CrossRefGoogle Scholar
  20. 20.
    Zervakis, G., Philippoussis, A., Ioannidou, S., & Diamantopoulou, P. (2001). Mycelium growth kinetics and optimal temperatures conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiologica, 46(3), 231–234.CrossRefGoogle Scholar
  21. 21.
    Akinyele, B. J., & Adetuyi, F. C. (2005). Effect of agrowastes, pH and temperature variation on growth of Volvariella volvacea. African Journal of Biotechnology, 4, 1390–1395.Google Scholar
  22. 22.
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.CrossRefGoogle Scholar
  23. 23.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  24. 24.
    Moonmoon, M., Uddin, Md. N., Khan, A. S., & Ruhul Amin, S. M. (2008). Effect of culture media and environmental factors on the mycelial growth of Volvariella volvacea. Bagladesh Journal of Mushroom, 2, 33–42.Google Scholar
  25. 25.
    Papinutti, L. (2010). Effects of nutrients, pH and water potential on exopolysaccharides production by fungal strain belonging to Ganoderma lucidum complex. Bioresource Technology, 101, 1941–1946.CrossRefGoogle Scholar
  26. 26.
    Nwokoye, A. I., Kuforiji, O. O., & Oni, P. P. (2010). Studies on mycelial growth requirements of Pleurotus ostreatus (Fr.) Singer. International Journal of Basic and Applied Sciences, 10, 70–89.Google Scholar
  27. 27.
    Maziero, R., Cavazzoni, V., & Bononi, V. L. R. (1999). Screening of Basidiomycetes for the production of exopolysaccharide and biomass in submerged culture. Revista de Microbiologia, 30, 77–84.CrossRefGoogle Scholar
  28. 28.
    Lee, W. Y., Park, Y., Ahn, J. K., Hyeon, K., & Park, S. Y. (2007). Factors influencing the production of endopolysaccharide and exopolysaccharide from Ganoderma applanatum. Enzyme and Microbial Technology, 40, 249–254.CrossRefGoogle Scholar
  29. 29.
    Tang, Y.-J., Zhang, W., Liu, R.-S., Zhu, L.-W., & Zhong, J.-J. (2011). Scale-up study on the fed-batch fermentation of Ganoderma lucidum for the hyperproduction of ganoderic acid and Ganoderma polysaccharides. Process Biochemistry, 46, 404–408.CrossRefGoogle Scholar
  30. 30.
    Stajić, M., Glamočlija, J., Maksimović, V., Vukojević, J., Simonić, J., & Zervakis, G. (2011). A comparative study of the potential of polysaccharide production and intracellular sugar composition within Lingzhi or Reishi medicinal mushroom, Ganoderma lucidum (W.Curt.:Fr.)P. Karst. (Aphyllophoromycetideae). International Journal of Medicinal Mushrooms, 13(2), 153–158.CrossRefGoogle Scholar
  31. 31.
    Jonathan, S. G., Fasidi, I. O., & Ajayi, E. J. (2004). Physico-chemical studies on Volvariella esculenta (Mass) Singer, a Nigerian edible fungus. Food Chemistry, 85, 339–342.CrossRefGoogle Scholar
  32. 32.
    Feng, Y.-L., Li, W.-Q., Wu, X.-Q., Cheng, J.-W., & Ma, S.-Y. (2010). Statistical optimization of media for mycelial growth and exopolysaccharide production by Lentinus edodes and a kinetic model study of two growth morphologies. Biochemical Engineering Journal, 49, 104–112.CrossRefGoogle Scholar
  33. 33.
    Vamvakaki, A. N., Kandarakis, I., Kaminarides, S., Komaitis, M., & Papanikolaou, S. (2010). Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Engineering in Life Sciences, 10, 348–360.CrossRefGoogle Scholar
  34. 34.
    Zhou, Y., Hong-bo, S., & Chen, De-yu. (2009). Effects of organic nitrogen and carbon sources on mycelial growth and polysaccharides production and their optimization in the submerged culture of Grifola umbellate, a Chinese medicinal herb. African Journal of Biotechnology, 8(20), 5202–5214.Google Scholar
  35. 35.
    Nair, N. G., Song, C. H., Jiang, J. H., Vine, J. H., Tattum, B., & Cho, K. Y. (1989). Lipid profile of Pleurotus sajor-caju. Annals of Applied Biology, 114, 167–176.CrossRefGoogle Scholar
  36. 36.
    Dembitsky, V. M., Shubina, E. E., & Kashin, A. G. (1992). Phospholipid and fatty acid composition of some basidiomycetes. Phytochemistry, 3(3), 845–849.Google Scholar
  37. 37.
    Bespalova, L. A., Makarov, O. E., Antonyuk, L. P., & Ignatov, V. V. (2002). Lipogenesis in the basidiomycetes Pleurotus ostreatus and Flammulina velutipes cultivated on different media. Applied Biochemistry and Microbiology, 38, 349–354.CrossRefGoogle Scholar
  38. 38.
    Pedneault, K., Angers, P., Gosselin, A., & Tweddell, R. J. (2006). Fatty acid composition of lipids from mushrooms belonging to the family Boletaceae. Mycological Research, 110, 1179–1183.CrossRefGoogle Scholar
  39. 39.
    Sumner, J. L. (1973). The fatty acid composition of basidiomycetes. New Zealand Journal of Botany, 11, 435–442.CrossRefGoogle Scholar
  40. 40.
    Tsai, S.-Y., Weng, C.-C., Huang, S.-J., Chen, C.-C., & Mau, J.-L. (2006). Nonvolatile taste components of Grifola frondosa, Morchella esculenta and Termitomyces albumyces mycelia. LWT, 39, 1066–1077.CrossRefGoogle Scholar
  41. 41.
    Tseng, H.-Y., Lee, L.-Y., Li, R.-C., & Mau, J.-L. (2005). Non-volatile flavour components of Ganoderma tsugae. Food Chemistry, 90, 409–425.CrossRefGoogle Scholar
  42. 42.
    Feofilova, E. P., Gornova, I. B., Memorskaya, A. S., & Garibova, L. V. (1998). Lipid composition of fruiting bodies and submerged mycelium from Lentinus edodes (Berk.) Sing (Lentinula edodes (Berk.) Pegler). Mikrobiologiya, 67, 655–659.Google Scholar
  43. 43.
    Gbolagade, J., Ajayi, A., Oku, I., & Wankasi, D. (2006). Nutritive value of common wild edible mushrooms from southern Nigeria. Global Journal of Biotechnology and Biochemistry, 1(1), 16–21.Google Scholar
  44. 44.
    Huang, L.-C., Huang, S.-J., Chen, C.-C. and Mau, J.-L. (1999). Antioxidant properties of Antrodia camphorata. In Proceeding of 3rd International Conference on Mushroom Biology and Mushroom Products, Sydney, Australia, pp. 275–283.Google Scholar
  45. 45.
    Hanuš, L. O., Shkrob, I., & Dembitsky, V. M. (2008). Lipids and fatty acids of wild edible mushrooms of the genus Boletus. Journal of Food Lipids, 15, 370–383.CrossRefGoogle Scholar
  46. 46.
    Hadar, Y. and Cohen-Arazi, E. (1986) Chemical composition of the edible mushroom Pleurotus ostreatus produced by fermentation. Applied and Environmental Microbiology 1352–1354.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Panagiota Diamantopoulou
    • 1
  • Seraphim Papanikolaou
    • 2
  • Maria Kapoti
    • 1
  • Michael Komaitis
    • 2
  • George Aggelis
    • 3
  • Antonios Philippoussis
    • 1
    Email author
  1. 1.Laboratory of Edible Fungi, Institute of Technology of Agricultural ProductsNational Agricultural Research Foundation (NAGREF)AthensGreece
  2. 2.Department of Food Science and TechnologyAgricultural University of AthensAthensGreece
  3. 3.Unit of Microbiology, Division of Genetics, Cell and Development Biology, Department of BiologyUniversity of PatrasPatrasGreece

Personalised recommendations