Applied Biochemistry and Biotechnology

, Volume 167, Issue 4, pp 776–790 | Cite as

Biosynthesis of Silver Nanoparticles Using Latex from Few Euphorbian Plants and Their Antimicrobial Potential



The synthesis of well-dispersed and ultrafine metal nanoparticles has great interest due to their distinctive physicochemical properties and biomedical applications. This study is the first report of one-step solvent-free synthesis of AgNPs using Euphorbiaceae plant latex. Among evaluated eight latex-producing plants, four (Jatropha curcas, Jatropha gossypifolia, Pedilanthus tithymaloides, and Euphorbia milii) showed high potential to produce physicochemically distinct, small-sized and bactericidal AgNPs. Phytochemical screening showed presence of rich amount of biochemicals in these plants. J. gossypifolia showed uniformly dispersed comparatively small-sized AgNPs. Dose-dependent growth inhibition of bacterial pathogens Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermis, and Micrococcus luteus was observed for J. gossypifolia latex-synthesized AgNPs with minimum inhibitory concentration values 30, 40, 70, 60, and 60 ppm, respectively, after 24 h. Possible mode of action of AgNPs against pathogens was confirmed by analyzing enzymes and cell leakage.


Euphorbiaceae Latex Nanoparticles Antimicrobial Jatropha gossypifolia Zeta potential 



Authors are thankful to Dr. Murali Sastry and Dr. Sumant Phadtare, TATA Chemicals Ltd., Pune, for their kind help in nanoparticle analysis.

Supplementary material

12010_2012_9710_Fig6_ESM.jpg (38 kb)
ESM. 1

(JPEG 37 kb)

12010_2012_9710_MOESM1_ESM.pdf (65 kb)
ESM. 2 (PDF 64 kb)
12010_2012_9710_MOESM2_ESM.pdf (65 kb)
ESM. 3 (PDF 65 kb)


  1. 1.
    Kim, J. S., Kuk, E., Yu, K. N., Kim, J. H., Park, S. J., Lee, H. J., Kim, S. H., Park, Y. K., Park, Y. H., Huwang, C. Y., Kim, Y. K., Lee, Y. S., Jeong, D. H., & Cho, M. H. (2007). Antimicrobial effects of silver nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 3, 95–101.CrossRefGoogle Scholar
  2. 2.
    Shahverdi, A. R., Fakhimi, A., Shahverdi, H. R., & Minaian, S. (2007). Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nanomedicine: Nanotechnology, Biology and Medicine, 3, 168–171.CrossRefGoogle Scholar
  3. 3.
    Vigneshwaran, N., Ashtaputre, N. M., Varadarajan, P. V., Nachane, R. P., Paralikar, K. M., & Balasubramanya, R. H. (2007). Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Materials Letters, 61, 1413–1418.CrossRefGoogle Scholar
  4. 4.
    Salunkhe, R. B., Patil, S. V., Salunke, B. K., Patil, C. D., & Sonawane, A. M. (2011). Studies on silver accumulation and nanoparticle synthesis by Cochliobolus lunatus. Applied Biochemistry and Biotechnology, 165, 221–234.CrossRefGoogle Scholar
  5. 5.
    Tripathy, A., Raichur, A. M., Chandrasekaran, N., Prathna, T. C., & Mukherjee, A. (2009). Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. Journal of Nanoparticle Research, 12(1), 237–246.CrossRefGoogle Scholar
  6. 6.
    Vivekanandhan, S., Misra, M., & Mohanty, A. K. (2009). Biological synthesis of silver nanoparticles using Glycine max (soybean) leaf extract: An investigation on different soybean varieties. Journal of Nanoscience and Nanotechnology, 9(12), 6828–6833.CrossRefGoogle Scholar
  7. 7.
    Sathishkumar, M., Sneha, K., Won, S. W., Cho, C. W., Kim, S., & Yun, Y. S. (2009). Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces. B, Biointerfaces, 73, 332–338.CrossRefGoogle Scholar
  8. 8.
    Singhal, G., Bhavesh, R., Kasariya, K., Sharma, A. R., & Singh, R. P. (2011). Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 13, 2981–2988. doi: 10.1007/s11051-011-0631-5.CrossRefGoogle Scholar
  9. 9.
    Song, J. Y., & Kim, B. S. (2009). Rapid biological synthesis of silver nanoparticles. Bioprocess and Biosystems Engineering, 32, 79–84.CrossRefGoogle Scholar
  10. 10.
    Webster, G. L. (1994). Classification of the Euphorbiaceae. Annals of the Missouri Botanical Garden, 81, 3–32.CrossRefGoogle Scholar
  11. 11.
    Evans, F. J., & Soper, C. J. (1978). The tigliane, daphnane and ingenane diterpenes, their chemistry, distribution and biological activities A review. Lloydia, 41, 193–233.Google Scholar
  12. 12.
    Wititsuwannaku, L. R., Wititsuwannakul, D., & Sakulborirug, C. (1998). A lectin from the bark of the rubber tree (Hevea brasiliensis). Phytochem, 47, 183–187.CrossRefGoogle Scholar
  13. 13.
    O’Keefe, B. R. (2001). Biologically active proteins from natural product extracts. Journal of Natural Products, 64, 1373–1381.CrossRefGoogle Scholar
  14. 14.
    Kubmarawa, D., Ajoku, G. A., Enwerem, N. M., & Okorie, D. A. (2007). Preliminary phytochemical and antimicrobial screening of 50 medicinal plants from Nigeria. African Journal of Biotechnology, 6(14), 1690–1696.Google Scholar
  15. 15.
    Kapoor, L.D. (1989). Handbook of Ayurdev madical plants. In Kapoor, L. D. (ed.). Med.plants. Boca Raton: CRC.Google Scholar
  16. 16.
    Ajibesin, K. K., Bala, D. N., Ekpo, B. A. J., & Adesanya, S. A. (2002). Toxicity of some plants implicated poisons in Nigerian ethnomedicine to rats. Nigerian Journal of Natural Products and Medicine, 6, 7–9.CrossRefGoogle Scholar
  17. 17.
    Abo, K., & Evans, F. J. (1981). The composition of a mixture of Ingol Esters from Euphorbia kamerunica. Planta Medica, 43(12), 392–395.CrossRefGoogle Scholar
  18. 18.
    Nath, L. K., & Dutta, S. K. (1992). Wound healing responses of the protelytic enzyme curcain. Indian Journal of Pharmacology, 24, 114–115.Google Scholar
  19. 19.
    Vidotti, G. J., Zimmermann, A., Sarragiotto, M. H., Nakamura, C. V., & Dias Filho, B. P. (2006). Antimicrobial and phytochemical studies on Pedilanthus tithymaloides. Fitoterapia, 77, 43–46.CrossRefGoogle Scholar
  20. 20.
    Kokate, A. (1999). Phytochemical methods. Phytotherapy, 78, 126–129.Google Scholar
  21. 21.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  22. 22.
    Dubois, M., Gilles, H. Y., Rebers, P., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356.CrossRefGoogle Scholar
  23. 23.
    Sastry, M., Patil, V., & Sainkar, S. R. (1998). Electrostatically controlled diffusion of carboxylic acid derivatized silver colloidal particles in thermally evaporated fatty amine films. The Journal of Physical Chemistry. B, 102(8), 1404–1410.CrossRefGoogle Scholar
  24. 24.
    Nair, B., & Pradeep, T. (2002). Coalescence of nanoclusters andformation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des, 2(4), 293–298.CrossRefGoogle Scholar
  25. 25.
    Joerger, R., Klaus, T., & Granqvist, C. G. (2000). Biologically produced silver–carbon composite materials for optically functional thin-film coatings. Advanced Materials, 12(6), 407–409.CrossRefGoogle Scholar
  26. 26.
    Mukherjee, P., Ahamd, A., Mandal, D., Senapati, S., Sainkar, S. R., Khan, M. I., Ramani, R., Parischa, R., Ajaykumar, P. V., Alam, M., Kumar, R., & Sastry, M. (2001). Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelia matrix: a novel biological approach to nanoparticle synthesis. Nano Letters, 1, 515–519.CrossRefGoogle Scholar
  27. 27.
    Mukherjee, P., Senapati, S., Mandal, D., Ahmad, A., Khan, M. I., Kumar, R., & Sastri, M. (2002). Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem bio chem, 5, 461–463.Google Scholar
  28. 28.
    Shankar, S. S., Rai, A., Ahmad, A., & Sastry, M. (2004). Rapid synthesis of Au, Ag, and bimetallic Au core Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. Journal of Colloid and Interface Science, 275, 496–502.CrossRefGoogle Scholar
  29. 29.
    Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem, 9, 852–858.CrossRefGoogle Scholar
  30. 30.
    Egorova, E. M., & Revina, A. A. (2000). Synthesis of metallic nanoparticles in reverse micelles in the presence of quercetin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 168, 87–96.CrossRefGoogle Scholar
  31. 31.
    Abubakar El, M. M. (2009). Antibacterial activity of crude extracts of Euphorbia hirta against some bacteria associated with enteric infections. Journal Medicine Plant Research, 3(7), 498–505.Google Scholar
  32. 32.
    Igbinosa, O. O., Igbinosa, E. O., & Aiyegoro, O. A. (2009). Antimicrobial activity and phytochemical screening of stem bark extracts from Jatropha curcas (Linn). Africa Journal Pharma Pharmacol, 3(2), 058–062.Google Scholar
  33. 33.
    Oduola, T., Avwioro, O. G., & Ayanniyi, T. B. (2005). Suitability of the leaf extract of Jatropha gossypifolia as an anticoagulant for iochemical and haematological analyses. African Journal of Biotechnology, 4(7), 679–681.Google Scholar
  34. 34.
    Abreu, P. M., Matthew, S., Gonza’lez, T., Vanickova, L., Costa, D., Gomes, A., Segundo, M. A., & Fernandes, E. (2008). Isolation and identification of antioxidants from Pedilanthus tithymaloides. Journal of Natural Medicines, 62, 67–70.CrossRefGoogle Scholar
  35. 35.
    Iwu, M. M., Igboko, O. A., Okeniyi, C. D., & Tempesta, M. S. (1990). Inhibition of the enzyme activity of aldosoreductase of some flavonoids by some flavonoids. Journal of Pharmacy and Pharmacology, 42, 290–292.CrossRefGoogle Scholar
  36. 36.
    Diallo, D., Sogn, C., Samake, F. B., Paulsen, B. S., Michaelsen, T. E., & Keita, A. (2002). Wound healing plants in Mali, the Bamako region. An ethnobotanical survey and complement fixation of water extracts from selected plants. Pharmaceutical Biology, 40, 117–128.CrossRefGoogle Scholar
  37. 37.
    Adamu, H. M., Abayeh, O. J., Agho, M. O., Abdullahi, A. L., Uba, A., Dukku, U., & Wufem, B. M. (2005). An ethnobotanical survey of Bauchi State herbal plants and their antimicrobial activity. Journal of Ethnopharmacology, 99, 1–4.CrossRefGoogle Scholar
  38. 38.
    Parashar, U. K., Saxena, P. S., & Srivastava, A. (2009). Bioinspired synthesis of silver nanoparticles. Dig Journal Nanomaterials Biostruct, 4, 159–166.Google Scholar
  39. 39.
    Kumar, V., & Yadav, S. K. (2009). Plant-mediated synthesis of silver and gold nanoparticles and their applications. Journal of Chemical Technology and Biotechnology, 84, 151–157.CrossRefGoogle Scholar
  40. 40.
    Chudasama, B., Vala, A., Andhariya, N., Mehta, R., & Upadhyay, R. (2009). Enhanced antibacterial activity of bifunctional Fe3O4–Ag core–shell nanostructures. Nanoparticle Research, 2, 955–965.Google Scholar
  41. 41.
    Jose, L. E., Justin, L. B., Jose, R. M., Alejandra, C. B., Xiaoxia, G., Humberto, H. L., & Miguel, J. (2005). Interaction of silver nanoparticles with HIV-1. Journal Nanobiotechnology, 3, 6.CrossRefGoogle Scholar
  42. 42.
    Furno, F., Morley, K. S., Wong, B., Sharp, B. L., Arnold, P. L., Howdle, S. M., et al. (2004). Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection. Journal of Antimicrobial Chemotherapy, 54, 1019–1024.CrossRefGoogle Scholar
  43. 43.
    Abuskhuna, S., Briody, J., McCann, M., Devereux, M., Kavanagh, K., Fontecha, J. B., et al. (2004). Synthesis, structure and anti-fungal activity of dimeric Ag(I) complexes containing bis-imidasole ligands. Polyhedron, 23, 1249–1255.CrossRefGoogle Scholar
  44. 44.
    Hamouda, T., Myc, A., Donovan, B., Shih, A., Reuter, J. D., & Baker, J. R., Jr. (2000). A novel surfactant nanoemulsion with a unique non-irritant topical antimicrobial activity against bacteria, enveloped viruses and fungi. Microbiology Research, 156, 1–7.CrossRefGoogle Scholar
  45. 45.
    Zhao, G., & Stevens, S. E., Jr. (1998). Multiple parameters for the comprehensive evaluation of the susceptibility of Escherichia coli to the silver ion. Biometals, 11, 27–32.CrossRefGoogle Scholar
  46. 46.
    Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. Journal of Colloid and Interface Science, 275, 177–182.CrossRefGoogle Scholar
  47. 47.
    Danilczuk, M., Lund, A., Saldo, J., Yamada, H., & Michalik, J. (2006). Conduction electron spin resonance of small silver particles. Spectrochimaca Acta Part A, 63, 189–191.CrossRefGoogle Scholar
  48. 48.
    Amro, N. A., Kotra, L. P., Wadu-Mesthrige, K., Bulychev, A., Mobashery, S., & Liu, G. (2000). High-resolution atomic force microscopy studies of the Escherichia coli outer membrane: Structural basis for permeability. Langmuir, 16, 2789–2796.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.School of Life SciencesNorth Maharashtra UniversityJalgaonIndia
  2. 2.North Maharashtra Microbial Culture Collection Centre (NMCC)North Maharashtra UniversityJalgaonIndia

Personalised recommendations