Applied Biochemistry and Biotechnology

, Volume 167, Issue 4, pp 791–808 | Cite as

Nano-TiO2-Induced Apoptosis by Oxidative Stress-Mediated DNA Damage and Activation of p53 in Human Embryonic Kidney Cells

  • Ramovatar Meena
  • Madhu Rani
  • Ruchita Pal
  • Paulraj RajamaniEmail author


The aim of the present study is to explore the mechanism of cytotoxic and genotoxic effects of TiO2 nanoparticles on human embryonic kidney (HEK-293) cells. Toxicity was evaluated using changes in various cellular parameters of HEK-293 cells like morphology, viability, metabolic activity, oxidative stress and apoptosis. Oxidative stress was measured by the level of reactive oxygen species (ROS), lipid peroxidation, superoxide dismutase, catalase and glutathione peroxidase. Apoptosis induced by nano-TiO2 was characterized by PI staining and DNA ladder assay. Furthermore, apoptotic proteins such as p53 and Bax were analysed by western blot. Our results indicate that nano-TiO2 induces cytotoxicity in a time- and dose-dependent manner. Oxidative stress and apoptosis were induced by exposure to nano-TiO2. Moreover, the expression of p53, Bax and caspase-3 were increased in a dose-dependent pattern. In conclusion, ROS-mediated oxidative stress, the activation of p53, Bax, caspase-3 and oxidative DNA damage are involved in the mechanistic pathways of nano-TiO2-induced apoptosis in HEK-293 cells.


Nano-TiO2 Cytotoxicity Oxidative stress p53 Apoptosis 



The authors are thankful to Advance Instrumentation Research Facility (AIRF), JNU New Delhi, for confocal microscopy, transmission electron microscopy, scanning electron microscopy and EDXRF instruments.


  1. 1.
    Aebi, H. E. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.CrossRefGoogle Scholar
  2. 2.
    Barnard, A. S. (2010). One-to-one comparison of sunscreen efficacy, aesthetics and potential nanotoxicity. Nature Nanotechnology, 5, 271–274.CrossRefGoogle Scholar
  3. 3.
    Bhattacharya, K., Davoren, M., Boertz, J., Schins, R., Hoffmann, E., & Dopp, E. (2009). Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Particle and Fibre Toxicology, 6, 17.CrossRefGoogle Scholar
  4. 4.
    Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  5. 5.
    Cardaci, S., Filomeni, G., Rotilio, G., Ciriolo, M. R. (2008). Reactive oxygen species mediated p53 activation and apoptosis induced by sodium nitroprusside in SHSYSY cells. Mol Pharmacol, 74, 1234–1245.Google Scholar
  6. 6.
    Chen, J. M., Tan, M. G., Nemmar, A., Song, W. M., Dong, M., Zhang, G. L., & Li, Y. (2006). Quantification of extra pulmonary translocation of intratracheal-instilled particles in vivo in rats: effect of lipopolysaccharide. Toxicology, 222, 195–201.CrossRefGoogle Scholar
  7. 7.
    Chan, J., Ying, T., Guang, Y. F., Lin, L. X., Xu, S., Fan, X. Y., Huang, Y. Y., & Yang, Y. J. (2011). Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biological Trace Element Research, 141, 3–15.CrossRefGoogle Scholar
  8. 8.
    Chowdhury, R., Chowdhury, S., Roychoudhury, P., Mandal C., Chaudhuri K. (2009). Arsenic induced apoptosis in malignant melanoma cells is enhanced by menadione through ROS generation, p38 signaling and p53 activation. Apoptosis, 14, 108–123.Google Scholar
  9. 9.
    Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival, modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89(2), 271–277.CrossRefGoogle Scholar
  10. 10.
    Donaldson, K., Stone, V., Gilmour, P. S., Brown, D. M., & Macnee, W. (2000). Ultrafine particles: mechanisms of lung injury. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 358, 2741–2749.CrossRefGoogle Scholar
  11. 11.
    Dreher, K. L. (2004). Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicological Sciences, 77(1), 3–5.CrossRefGoogle Scholar
  12. 12.
    Elbekai, R. H., El-Kadi, A. O. S. (2005). The role of oxidative stress in the modulation of aryl hydrocarbon receptor-regulated genes by As3+, Cd2+ and Cr6+. Free Radic Biol Med, 39, 1499–1511.Google Scholar
  13. 13.
    Florea, A. M., Splettstoesser, F., & Busselberg, D. (2007). Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK). Toxicology and Applied Pharmacology, 220, 292–301.CrossRefGoogle Scholar
  14. 14.
    Foucaud, L., Wilson, M. R., Brown, D. M., & Stone, V. (2007). Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicology Letters, 174, 1–9.CrossRefGoogle Scholar
  15. 15.
    Galluzzi, L., Blomgren K., Kroemer G. (2009). Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci, 10(7), 481–494.Google Scholar
  16. 16.
    Gelis, C., Girard, S., Mavon, A., Delverdier, M., Pailous, N., & Vicendo, P. (2003). Assessment of the skin photo-protective capacities of an organo-mineral broad spectrum sunblock on two ex vivo skin models. Photodermatology, Photoimmunology and Photomedicine, 19(5), 242–253.CrossRefGoogle Scholar
  17. 17.
    Gheshlaghi, Z. N., Riazi, G. H., Ahmadian, S., Ghafari, M., & Mahinpour, R. (2008). Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochimica et Biophysica Sinica, 40, 777–782.Google Scholar
  18. 18.
    Gojova, A., Guo, B., Kota, R. S., Rutledge, J. C., Kennedy, I. M., & Barakat, A. I. (2007). Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environmental Health Perspectives, 115, 403–409.CrossRefGoogle Scholar
  19. 19.
    Gurr, J., Wang, A. A. S., Chen, C., & Jan, K. (2005). Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology, 213, 66–73.CrossRefGoogle Scholar
  20. 20.
    Hirakawa, K., Mori, M., Yoshida, M., Oikawa, S., & Kawanishi, S. (2004). Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radical Research, 38(5), 439–447.CrossRefGoogle Scholar
  21. 21.
    Hirano, S., Kanno, S., & Furuyama, A. (2008). Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicology and Applied Pharmacology, 232, 244–251.CrossRefGoogle Scholar
  22. 22.
    Holly, A. K., St-Clair, D. K. (2009). Watching the watcher: Regulation of p53 by mitochondria. Future Oncol, 5(1), 117–130.Google Scholar
  23. 23.
    Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T., & Schlager, J. J. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology In Vitro, 19, 975–983.CrossRefGoogle Scholar
  24. 24.
    Ishizawa, M., Kobayashi, Y., Miyamura, T., & Matsuura, S. (1991). Simple procedure of DNA isolation from human serum. Nucleic Acids Research, 19, 5792.CrossRefGoogle Scholar
  25. 25.
    Ji, L. L., Chen, Y., & Wang, Z. T. (2008). The toxic effect of pyrrolizidine alkaloid clivorine on the human embryonic kidney 293 cells and its primary mechanism. Experimental and Toxicologic Pathology, 60, 87–93.CrossRefGoogle Scholar
  26. 26.
    Kang, S. J., Kim, B. M., Lee, Y. J., & Chung, H. W. (2008). Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environmental and Molecular Mutagenesis, 49, 399–405.CrossRefGoogle Scholar
  27. 27.
    Kleinman, M. T., Araujo, J. A., Nel, A., Sioutas, C., Campbell, A., Cong, P. Q., Li, H., & Bondy, S. C. (2008). Inhaled ultrafine particulate matter affects CNS inflammatory processes and may act via MAP kinase signaling pathways. Toxicology Letters, 178, 127–130.CrossRefGoogle Scholar
  28. 28.
    Kreyling, W. G., Semmler, M., Erbe, F., Mayer, P., Takenaka, S., Schulz, H., Oberdorster, G., & Ziesenis, A. (2002). Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. Journal of Toxicology and Environmental Health. Part A, 65, 1513–1530.CrossRefGoogle Scholar
  29. 29.
    Kulms, D., Zeise, E., Poppelmann, B., & Schwarz, T. (2002). DNA damage, death receptor activation and reactive oxygen species contribute to ultraviolet radiation induced apoptosis in an essential and independent way. Oncogene, 21, 5844–5851.CrossRefGoogle Scholar
  30. 30.
    Li, S. Q., Zhu, R. R., Zhu, H., Xue, M., Sun, X. Y., Yao, S. D., & Wang, S. L. (2008). Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food and Chemical Toxicology, 46, 3626–3631.CrossRefGoogle Scholar
  31. 31.
    Lin, W. S., Huang, Y. W., Zhou, X. D., & Ma, Y. F. (2006). In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology, 217, 252–259.CrossRefGoogle Scholar
  32. 32.
    Long, T. C., Tajuba, J., Sama, P., Saleh, N., Swartz, C., Parker, J., Hester, S., Lowry, G. V., & Veronesi, B. (2007). Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environmental Health Perspectives, 115, 1631–1637.CrossRefGoogle Scholar
  33. 33.
    Low, W. K., Tan, M. G., Sun, L., Chua, A. W., Goh, L. K., & Wang, D. Y. (2006). Dose-dependent radiation-induced apoptosis in a cochlear cell-line. Apoptosis, 11, 2127–2136.CrossRefGoogle Scholar
  34. 34.
    Marklund, S. L., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay of superoxide dismutase. European Journal of Biochemistry, 47, 469–474.CrossRefGoogle Scholar
  35. 35.
    Markovic, Z., Todorovic-Markovic, B., Kleut, D., Nikolic, N., Vranjes-Djuric, S., Misirkic, M., Vucicevic, L., Janjetovic, K., Isakovic, A., Harhaji, L., Babic-Stojic, B., Dramicanin, M., & Trajkovic, V. (2007). The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials, 28, 5437–5448.CrossRefGoogle Scholar
  36. 36.
    Medina, C., Santos-Martinez, M. J., Radomski, A., Corrigan, O. I., & Radomski, M. W. (2007). Nanoparticles: pharmacological and toxicological significance. British Journal of Pharmacology, 150, 552–558.CrossRefGoogle Scholar
  37. 37.
    Meena, R., Kesari, K. K., Rani, M., & Paulraj, R. (2012). Effect of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7). Journal of Nanoparticle Research, 14, 712.CrossRefGoogle Scholar
  38. 38.
    Mroz, R. M., Schins, R. P., Li, H., Jimenez, L. A., Drost, E. M., Holownia, A., MacNee, W., & Donaldson, K. (2008). Nanoparticle-driven DNA damage mimics irradiation related carcinogenesis pathways. European Respiratory Journal, 31, 241–251.CrossRefGoogle Scholar
  39. 39.
    Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627.CrossRefGoogle Scholar
  40. 40.
    Nemmar, A., Hoylaerts, M. F., Hoet, P. H., & Nemery, B. (2004). Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects. Toxicology Letters, 149, 243–253.CrossRefGoogle Scholar
  41. 41.
    Osano, E., Kishi, J., & Takahashi, Y. (2003). Phagocytosis of titanium particles and necrosis in TNF-alpha-resistant mouse sarcoma L929 cells. Toxicology In Vitro, 17, 41–47.CrossRefGoogle Scholar
  42. 42.
    Pan, Z., Lee, W., Slutsky, L., Clark, R. A., Pernodet, N., & Rafailovich, M. H. (2009). Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small, 5, 511–520.CrossRefGoogle Scholar
  43. 43.
    Park, B., Donaldson, K., Duffin, R., Tran, L., Kelly, F., Mudway, I., Morin, J. P., Guest, R., Jenkinson, P., Samaras, Z., Giannouli, M., Kouridis, H., & Martin, P. (2008a). Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive—a case study. Inhalation Toxicology, 20, 547–566.CrossRefGoogle Scholar
  44. 44.
    Park, E. J., Choi, J., Park, Y., & Park, K. (2008b). Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology, 1(2), 90–100.CrossRefGoogle Scholar
  45. 45.
    Paulraj, R., & Behari, J. (2006). Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutation Research, 596, 76–80.CrossRefGoogle Scholar
  46. 46.
    Pioletti, D. P., Takei, H., Kwon, S. Y., Wood, D., & Sung, K. L. (1999). The cytotoxic effect of titanium particles phagocytosed by osteoblasts. Journal of Biomedical Materials Research, 46, 399–407.CrossRefGoogle Scholar
  47. 47.
    Pommier, Y., Sordet, O., Antony, S., Hayward, R. L., & Kohn, K. W. (2004). Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene, 23, 2934–2949.CrossRefGoogle Scholar
  48. 48.
    Riccardi, C., & Nicoletti, I. (2006). Analysis of apoptosis by propidium iodide staining and flow cytometry. Nature Protocols, 1, 1458–1461.CrossRefGoogle Scholar
  49. 49.
    Riedl, S. J., & Shi, Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. Nature Reviews Molecular Cell Biology, 5, 897–907.CrossRefGoogle Scholar
  50. 50.
    Roduit, R., & Schorderet, D. F. (2008). MAP kinase pathways in UV-induced apoptosis of retinal pigment epithelium ARPE19 cells. Apoptosis, 13, 343–353.CrossRefGoogle Scholar
  51. 51.
    Sayes, C. M., Gobin, A. M., Ausman, K. D., Mendez, J., West, J. L., & Colvin, V. L. (2005). Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials, 26, 7587–7595.CrossRefGoogle Scholar
  52. 52.
    Sun, D., Meng, T. T., Loong, H., & Hwa, T. J. (2004). Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtrating membrane. Water Science and Technology, 49, 103–110.Google Scholar
  53. 53.
    Varshney, R., & Kale, R. K. (1990). Effect of calmodulin antagonist on radiation-induced lipid peroxidation in microsomes. International Journal of Radiation Biology, 58, 733–743.CrossRefGoogle Scholar
  54. 54.
    Wang, J. J., Sanderson, B. J., & Wang, H. (2007). Cyto and geno-toxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutation Research, 628, 99–106.Google Scholar
  55. 55.
    Wang, M. L., Tuli, R., Manner, P. A., Sharkey, P. F., Hall, D. J., & Tuan, R. S. (2003). Direct and indirect induction of apoptosis in human mesenchymal stem cells in response to titanium particles. Journal of Orthopaedic Research, 21, 697–707.CrossRefGoogle Scholar
  56. 56.
    Xia, T. (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Letters, 6(8), 1794–1807.CrossRefGoogle Scholar
  57. 57.
    Xing, Y. X., Li, P., Miao, Y. X., Du, W., & Wang, C. B. (2008). Involvement of ROS/ASMase/JNK signalling pathway in inhibiting UVA-induced apoptosis of HaCaT cells by polypeptide from Chlamys farreri. Free Radical Research, 42, 12–19.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ramovatar Meena
    • 1
  • Madhu Rani
    • 2
  • Ruchita Pal
    • 3
  • Paulraj Rajamani
    • 1
    Email author
  1. 1.School of Environmental SciencesJawaharlal Nehru UniversityNew DelhiIndia
  2. 2.School of BiotechnologyJawaharlal Nehru UniversityNew DelhiIndia
  3. 3.Advanced Instrumentation Research FacilityJawaharlal Nehru UniversityNew DelhiIndia

Personalised recommendations