Applied Biochemistry and Biotechnology

, Volume 167, Issue 3, pp 489–497 | Cite as

The Effect of Chemical Modification with Pyromellitic Anhydride on Structure, Function, and Thermal Stability of Horseradish Peroxidase

  • Leila HassaniEmail author


The stability of enzymes remains a critical issue in biotechnology. Compared with the strategies for obtaining stable enzymes, chemical modification is a simple and effective technique. In the present study, chemical modification of horseradish peroxidase (HRP) was carried out with pyromellitic anhydride. HRP has achieved a prominent position in the pharmaceutical, chemical, and biotechnological industries. In this study, the effect of chemical modification on thermal stability, structure, and function of the enzyme was studied by fluorescence, circular dichroism, and absorbance measurements. The results indicated a decrease in compactness of the structure and a considerable enhancement in thermal stability of HRP below 60 °C. It seems the charge replacement and introduction of the bulky group bring about the observed structural and the functional changes.


Chemical modification Horseradish peroxidase Pyromellitic anhydride Thermal stability 



Financial support for this work was provided by Research Council of Institute for Advanced Studies in Basic Sciences (IASBS).


  1. 1.
    Fagain, C. O. (2003). Enzyme Microbial Technology, 33, 137–149.CrossRefGoogle Scholar
  2. 2.
    Polizzi, K. M., Bommarius, A. S., Broering, J. M., & Chaparro-Riggers, J. F. (2007). Current Opinion in Chememical Biology, 11, 220–225.CrossRefGoogle Scholar
  3. 3.
    He, Z., & Zhang, Z. (1999). Journal of Protein Chemistry, 18, 557–564.CrossRefGoogle Scholar
  4. 4.
    Davis, B. G. (2003). Current Opinion in Biotechnology, 14, 379–386.CrossRefGoogle Scholar
  5. 5.
    Ugorova, N. N., Rozhova, G. D., & Berezin, I. V. (1979). Biochimica et Biophysica Acta, 570, 31–42.Google Scholar
  6. 6.
    Miland, E., Smyth, M. R., & Fagain, C. O. (1996). Enzyme and Microbial Technology, 19, 63–67.CrossRefGoogle Scholar
  7. 7.
    Vinogradov, A. A., Kudryashova, E. V., Grinberg, V. Y., Grinberg, N. V., Burova, T. V., & Levashov, A. V. (2001). Protein Engineering, 14, 638–689.Google Scholar
  8. 8.
    Mozhaev, V. V., Siksnis, V. A., Melik-Nubarov, N. S., Galkantaite, N. Z., Denis, G. J., Butkus, E. P., et al. (1988). European Journal of Biochemistry, 173, 147–154.CrossRefGoogle Scholar
  9. 9.
    Mozhaev, V. V., Melik-Nubarov, N. S., Levitsky, V. Y., Siksins, V. A., & Martinek, K. (1992). Biotechnology and Bioengineering, 40, 650–662.CrossRefGoogle Scholar
  10. 10.
    Butter, P. J. G., & Hartley, B. S. (1973). Methods in Enzymology. New York: Academic.Google Scholar
  11. 11.
    Mozhaev, V. V. (1993). Trends in Biotechnology, 11, 88–95.CrossRefGoogle Scholar
  12. 12.
    Hassani, L., Ranjbar, B., Khajeh, K., Naderi-Manesh, H., Naderi-Manesh, M., & Sadeghi, M. (2006). Enzyme and Microbial Technology, 38, 118–125.CrossRefGoogle Scholar
  13. 13.
    Gajhede, M., Schuller, D. J., Henricksen, A., Smith, A. T., & Poulos, T. L. (1997). Nature Structural and Molecular Biology, 49, 1032–1039.Google Scholar
  14. 14.
    Veitch, N. C. (2004). Phytochemistry, 65, 249–259.CrossRefGoogle Scholar
  15. 15.
    Ryan, O., Smyth, M. R., & Fagain, C. O. (1994). Horseradish peroxidase: the analysts friend. London: Protland Press.Google Scholar
  16. 16.
    Veitch, N. C., & Smith, A. T. (2001). Advanced Inorganic Chemistry, 51, 107–162.CrossRefGoogle Scholar
  17. 17.
    That, N. (2010). Analytical Letters, 43, 1572–1587.CrossRefGoogle Scholar
  18. 18.
    Trinder, P. (1969). Annals of Clinical Biochemistry, 6, 24–27.Google Scholar
  19. 19.
    Dixon, H. B. F., & Perham, R. N. (1968). Biochemical Journal, 109, 312–313.Google Scholar
  20. 20.
    Fields, R. (1971). Biochemical Journal, 124, 581–590.Google Scholar
  21. 21.
    Kelly, S. M., Jess, T. J., & Price, N. C. (2005). Biochimica et Biophysica Acta, 1751, 119–139.Google Scholar
  22. 22.
    Eftink, M. R., & Ghiron, C. A. (1976). Biochemistry, 16, 5546–5551.CrossRefGoogle Scholar
  23. 23.
    Lakowicz, J. R. (1983). Principles of fluorescence spectroscopy. New York: Plenum.CrossRefGoogle Scholar
  24. 24.
    Khmelnitsky, Y. L., Belova, A. B., Levashov, A. V., & Mozhaev, V. V. (1991). FEES letters, 284, 267–269.CrossRefGoogle Scholar
  25. 25.
    Mogharrab, N., Ghourchian, H., & Amininasab, M. (2007). Biophysical Journal, 92, 1192–1203.CrossRefGoogle Scholar
  26. 26.
    Ryan, O., Smyth, M. R., & Fagain, C. O. (1994). Enzyme and Microbial Technology, 16, 501–505.CrossRefGoogle Scholar
  27. 27.
    Miland, E., Smyth, M. R., & Fagain, C. O. (1996). Enzyme and Microbial Technology, 19, 242–249.CrossRefGoogle Scholar
  28. 28.
    Garcia, D., Ortega, F., & Marty, J. L. (1998). Biotechnology and Applied Biochemistry, 27, 49–54.Google Scholar
  29. 29.
    Brien, A. M., Fagain, C. O., Nielsen, P. F., & Welinder, K. G. (2001). Biotechnology and Bioengineering, 76, 277–284.CrossRefGoogle Scholar
  30. 30.
    Brien, A. M., Smith, A. T., & Fagain, C. O. (2003). Biotechnology and Bioengineering, 81, 233–240.CrossRefGoogle Scholar
  31. 31.
    Song, H. Y., Liu, J. Z., Xiong, Y. H., Weng, L. P., & Ji, L. N. (2003). Journal of Molecular Catalysis B: Enzymatic, 22, 37–44.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Biological SciencesInstitute for Advanced Studies in Basic Sciences (IASBS)ZanjanIran

Personalised recommendations