Applied Biochemistry and Biotechnology

, Volume 166, Issue 8, pp 1908–1926 | Cite as

Advances and Developments in Strategies to Improve Strains of Saccharomyces cerevisiae and Processes to Obtain the Lignocellulosic Ethanol−A Review

  • C. Laluce
  • A. C. G. Schenberg
  • J. C. M. Gallardo
  • L. F. C. Coradello
  • S. R. Pombeiro-Sponchiado
Article

Abstract

The conversion of biomass into ethanol using fast, cheap, and efficient methodologies to disintegrate and hydrolyse the lignocellulosic biomass is the major challenge of the production of the second-generation ethanol. This revision describes the most relevant advances on the conversion process of lignocellulose materials into ethanol, development of new xylose-fermenting strains of Saccharomyces cerevisiae using classical and modern genetic tools and strategies, elucidation of the expression of some complex industrial phenotypes, tolerance mechanisms of S. cerevisiae to lignocellulosic inhibitors, monitoring and strategies to improve fermentation processes. In the last decade, numerous engineered pentose-fermenting yeasts have been developed using molecular biology tools. The increase in the tolerance of S. cerevisiae to inhibitors is still an important issue to be exploited. As the industrial systems of ethanol production operate under non-sterile conditions, microbial subpopulations are generated, depending on the operational conditions and the levels of contaminants. Among the most critical requirements for production of the second-generation ethanol is the reduction in the levels of toxic by-products of the lignocellulosic hydrolysates and the production of low-cost and efficient cellulosic enzymes. A number of procedures have been established for the conversion of lignocellulosic materials into ethanol, but none of them are completely satisfactory when process time, costs, and efficiency are considered.

Keywords

Biomass pretreatments and hydrolysis Pentose-fermenting yeasts Pentose metabolism in yeast Yeast tolerance to biomass hydrolysates Genes related to yeast stresses Yeast diversity and dynamics Saccharomyces cerevisiae 

Notes

Acknowledgements

The authors wish to express their gratitude to FAPESP for all the financial support given to their research on bioethanol production for so many years and particularly to the Bioenergy/FAPESP program, which has encouraged them to work on the production of bioethanol from sugarcane bagasse.

References

  1. 1.
    Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.CrossRefGoogle Scholar
  2. 2.
    Mussatto, S. I., Dragone, G., Guimarães, P. M. R., Silva, J. P. A., Carneiro, L. M., Roberto, I. C., et al. (2010). Biotechnology Advances, 28, 817–830.CrossRefGoogle Scholar
  3. 3.
    Hendriks, A. T. W. M., & Zeeman, G. (2009). Bioresource Technology, 100, 10–18.CrossRefGoogle Scholar
  4. 4.
    Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R., & Monot, F. (2009). Current Opinion in Biotechnology, 20, 372–380.CrossRefGoogle Scholar
  5. 5.
    Gírio, F. M., Fonseca, C., Carvalheiro, F., Duarte, L. C., Marques, S., & Bogel-Lukasik, R. (2010). Bioresource Technology, 101, 4775–4800.CrossRefGoogle Scholar
  6. 6.
    Zhao, X., Cheng, K., & Liu, D. (2009). Applied Microbiology and Biotechnology, 82, 815–827.CrossRefGoogle Scholar
  7. 7.
    Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Industrial and Engineering Chemistry Research, 48, 3713–3729.CrossRefGoogle Scholar
  8. 8.
    Yang, B., & Wyman, C. E. (2008). Biofuels, Bioproducts and Biorefining, 2, 26–40.CrossRefGoogle Scholar
  9. 9.
    Hamelinck, C. N., van Hooijdonk, G., & Faaij, A. P. C. (2005). Biomass and Bioenergy, 28, 384–410.CrossRefGoogle Scholar
  10. 10.
    Carvalheiro, F., Duarte, L. C., & Gírio, F. M. (2008). Journal of Scientific and Industrial Research, 67, 849–864.Google Scholar
  11. 11.
    Iranmahboob, J., Nadim, F., & Monemi, S. (2002). Biomass and Bioenergy, 22, 401–404.CrossRefGoogle Scholar
  12. 12.
    Rossell, C. E. V., Lahr Filho, D., Hilst, A. G. P., & Leal, M. R. L. V. (2005). International Sugar Journal, 107, 192–195.Google Scholar
  13. 13.
    Taherzadeh, M., & Karimi, K. (2007). BioResources, 2, 472–499.Google Scholar
  14. 14.
    Gregg, D. J., & Saddler, J. N. (1996). Biotechnology and Bioengineering, 51, 375–383.CrossRefGoogle Scholar
  15. 15.
    Gautam, S. P., Bundela, P. S., Pandey, A. K., Khan, J., Awasthi, M. K., & Sarsaiya, S. (2011). Biotechnology Research International. doi: 10.4061/2011/810425.
  16. 16.
    Stambuk, B. U., Eleutherio, E. C. A., Florez-Pardo, L. M., Souto-Maior, A. M., & Bom, E. P. S. (2008). Journal of Scientific and Industrial Research, 67, 918–926.Google Scholar
  17. 17.
    Slininger, P. J., Bolen, P. L., & Kurztman, C. P. (1987). Enzyme and Microbial Technology, 9, 5–15.CrossRefGoogle Scholar
  18. 18.
    Olsson, L., & Hahn-Hägerdal, B. (1996). Enzyme and Microbial Technology, 18, 312–331.CrossRefGoogle Scholar
  19. 19.
    Lynd, L. R., Weimer, P. J., van Zyl, W. H., & Pretorius, I. S. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.CrossRefGoogle Scholar
  20. 20.
    Bothast, R. J., Nichols, N. N., & Dien, B. S. (1999). Biotechnology Progress, 15, 867–875.CrossRefGoogle Scholar
  21. 21.
    Dien, B. S., Cotta, M. A., & Jeffries, T. W. (2003). Applied Microbiology and Biotechnology, 63, 258–266.CrossRefGoogle Scholar
  22. 22.
    Lau, M. W., Gunawan, C., Balan, V., & Dale, B. E. (2010). Biotechnology for Biofuels, 3, 11–15.CrossRefGoogle Scholar
  23. 23.
    Xu, Q., Singh, A., & Himmel, M. E. (2009). Current Opinion in Biotechnology, 20, 364–371.CrossRefGoogle Scholar
  24. 24.
    Panagiotou, G., Villas-Bôas, S. G., Christakopoulos, P., Nielsen, J., & Olsson, L. (2005). Journal of Biotechnology, 115, 425–434.CrossRefGoogle Scholar
  25. 25.
    Olsson, L., & Hahn-Hägerdal, B. (1993). Process Biochemistry, 28, 249–257.CrossRefGoogle Scholar
  26. 26.
    Jones, D. T., Shirley, M., Wu, X., & Keis, S. (2000). Journal of Molecular Microbiology and Biotechnology, 2, 21–26.Google Scholar
  27. 27.
    Los, M., Golec, P., Los, J. M., Weglewska-Jurkiewicz, A., Czyz, A., Wegrzyn, A., et al. (2007). BMC Biotechnology, 7, 13–18.CrossRefGoogle Scholar
  28. 28.
    Lee, W.-J., Kim, M.-D., Ryu, Y.-W., Bisson, L. F., & Seo, J.-H. (2002). Applied Microbiology and Biotechnology, 60, 186–191.CrossRefGoogle Scholar
  29. 29.
    Sedlak, M., & Ho, N. W. Y. (2004). Yeast, 21, 671–684.CrossRefGoogle Scholar
  30. 30.
    Runquist, D., Hahn-Hägerdal, B., & Radstrom, P. (2010). Biotechnology for Biofuels, 3, 5–11.CrossRefGoogle Scholar
  31. 31.
    Leandro, M. J., Fonseca, C., & Gonçalves, P. (2009). FEMS Yeast Research, 9, 511–525.CrossRefGoogle Scholar
  32. 32.
    Matsushika, A., Inoue, H., Kodaki, T., & Sawayama, S. (2009). Applied Microbiology and Biotechnology, 84, 37–53.CrossRefGoogle Scholar
  33. 33.
    Chandel, A. K., Chandrasekhar, G., Radhika, K., Ravinder, R., & Ravindra, P. (2011). Biotechnology and Molecular Biology Review, 6, 8–20.Google Scholar
  34. 34.
    Toivari, M. H., Aristidou, A., Rouhonen, L., & Penttilä, M. (2001). Metabolic Engineering, 3, 236–249.CrossRefGoogle Scholar
  35. 35.
    Toivari, M. H., Salusjârvi, L., Rouhonen, L., & Penttilä, M. (2004). Applied and Environmental Microbiology, 70, 3681–3686.CrossRefGoogle Scholar
  36. 36.
    Verho, R., Londesborough, J., Penttilã, M., & Richard, P. (2003). Environmental Microbiology, 69, 5892–5897.CrossRefGoogle Scholar
  37. 37.
    Wisselink, H. W., Toirkens, M. J., Wu, Q., Pronk, J. T., & van Maris, A. J. A. (2009). Applied and Environmental Microbiology, 75, 907–914.CrossRefGoogle Scholar
  38. 38.
    Bettiga, M., Bengtsson, O., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2009). Microbial Cell Factories, 8, 40–51.CrossRefGoogle Scholar
  39. 39.
    Mortimer, R. K. (2000). Genome Research, 10, 403–409.CrossRefGoogle Scholar
  40. 40.
    Amorim, H. V., Lopes, M. L., Oliveira, J. V. C., Buckeridge, M. S., & Godman, G. H. (2011). Applied Microbiology and Biotechnology, 91, 1267–1275.CrossRefGoogle Scholar
  41. 41.
    Souza, C. S., Thomaz, D., Cides, E. R., Oliveira, K. F., Tognoli, J. O., & Laluce, C. (2007). World Journal of Microbiology and Biotechnology, 23, 1667–1677.CrossRefGoogle Scholar
  42. 42.
    Basso, L. C., Amorim, H. V., Oliveira, A. J., & Lopes, M. L. (2008). FEMS Yeast Research, 8, 1155–1163.CrossRefGoogle Scholar
  43. 43.
    Nevoigt, E. (2008). Microbiology and Molecular Biology Reviews, 72, 379–412.CrossRefGoogle Scholar
  44. 44.
    Patnaik, R. (2008). Biotechnology Progress, 24, 38–47.CrossRefGoogle Scholar
  45. 45.
    Karagüler, N. G., Sessions, R. B., Binay, B., Ordu, E. B., & Clarke, A. R. (2007). Biochemical Society Transactions, 35, 1610–1615.CrossRefGoogle Scholar
  46. 46.
    Schuster, S., Dandekar, T., & Fell, D. A. (1999). Trends in Biotechnology, 17, 53–60.CrossRefGoogle Scholar
  47. 47.
    Bailey, J. E., Sburlati, A., Hatzimanikatis, V., Lee, K., Renner, W. A., & Tsai, P. S. (2002). Biotechnology and Bioengineering, 79, 568–579.CrossRefGoogle Scholar
  48. 48.
    Lee, S. K., Chou, H., Ham, T. S., Lee, T. S., & Keasling, J. D. (2008). Current Opinion in Biotechnology, 19, 556–563.CrossRefGoogle Scholar
  49. 49.
    Jeffries, T. W. (2006). Current Opinion in Biotechnology, 17, 320–326.CrossRefGoogle Scholar
  50. 50.
    Gong, J., Zheng, H., Wu, Z., Chen, T., & Zhao, X. (2009). Biotechnology Advances, 27, 996–1005.CrossRefGoogle Scholar
  51. 51.
    Alper, H., & Stephanopoulos, G. (2007). Metabolic Engineering, 9, 258–267.CrossRefGoogle Scholar
  52. 52.
    Sauer, U. (2001). Advances in Biochemical Engineering. Biotechnology, 73, 130–166.Google Scholar
  53. 53.
    Araya, C. L., Payen, C., Dunhum, M. J., & Fields, S. (2010). BMC Genomics, 11, 88–98.CrossRefGoogle Scholar
  54. 54.
    Shi, D., Wang, C., & Wang, K. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 139–147.CrossRefGoogle Scholar
  55. 55.
    Hou, L. (2009). Biotechnology Letters, 31, 671–677.CrossRefGoogle Scholar
  56. 56.
    Zeyl, C. (2004). Research in Microbiology, 155, 217–223.CrossRefGoogle Scholar
  57. 57.
    Wisselink, H. W., Toirkens, M. J., del Rosario Franco Berriel, M., Winkler, A. A., van Dijken, J. P., Pronk, J. T., et al. (2007). Applied and Environmental Microbiology, 73, 4881–4891.CrossRefGoogle Scholar
  58. 58.
    Bettiga, M., Hahn-Hägerdal, B., & Gorwa-Grauslund, M. F. (2008). Biotechnology for Biofuels, 1, 16–23.CrossRefGoogle Scholar
  59. 59.
    Sonderegger, M., & Sauer, U. (2003). Applied and Environmental Microbiology, 69, 1990–1998.CrossRefGoogle Scholar
  60. 60.
    Liu, H., Yan, M., Lai, C., Xu, L., & Ouyang, P. (2010). Applied Biochemistry and Biotechnology, 160, 574–582.CrossRefGoogle Scholar
  61. 61.
    Young, E., Lee, S. M., & Alper, H. (2010). Biotechnology for Biofuels, 3, 24–35.CrossRefGoogle Scholar
  62. 62.
    Krahulec, S., Petschacher, B., Wallner, M., Longus, K., Klimacek, M., & Nidetzky, B. (2010). Microbial Cell Factories, 9, 16–29.CrossRefGoogle Scholar
  63. 63.
    Verduyn, C., van Kleef, R., Frank, J., Schreuder, H., van Dijken, J., & Scheffers, A. (1985). Biochemical Journal, 226, 669–677.Google Scholar
  64. 64.
    Jeffries, T. W. (1985). Trends in Biotechnology, 3, 208–212.CrossRefGoogle Scholar
  65. 65.
    Watanabe, S., Saleh, A. A., Pack, S. P., Annaluru, N., Kodaki, T., & Makino, K. (2007). Microbiology, 153, 3044–3054.CrossRefGoogle Scholar
  66. 66.
    Almeida, J. R. M., Modig, T., Petersson, A., Hahn-Hägerdal, B., Lidén, G., & Gorwa-Grauslund, M. F. (2007). Journal of Chemical Technology and Biotechnology, 82, 340–349.CrossRefGoogle Scholar
  67. 67.
    Parawira, W., & Tekere, M. (2011). Critical Reviews in Biotechnology, 31, 20–31.CrossRefGoogle Scholar
  68. 68.
    Mashego, M. R., Jansen, M. L. A., Vinke, J. L., van Gulik, W. M., & Heijnen, J. J. (2005). FEMS Yeast Research, 5, 419–430.CrossRefGoogle Scholar
  69. 69.
    Heer, D., & Sauer, U. (2008). Microbial Biotechnology, 1, 497–506.CrossRefGoogle Scholar
  70. 70.
    Liu, Z. L., Slininger, P. J., & Gorsich, S. W. (2005). Applied Biochemistry and Biotechnology, 121–124, 451–460.CrossRefGoogle Scholar
  71. 71.
    Almeida, J. R. M., Bertilsson, M., Gorwa-Grauslund, M. F., Gorsich, S., & Lidén, G. (2009). Applied Microbiology and Biotechnology, 82, 625–638.CrossRefGoogle Scholar
  72. 72.
    Giannattasio, S., Guaragnella, N., Corte-Real, M., Passarela, S., & Marra, E. (2005). Gene, 354, 93–98.CrossRefGoogle Scholar
  73. 73.
    Vanderbergh, P. A. (1993). FEMS Microbiology Reviews, 12, 221–237.CrossRefGoogle Scholar
  74. 74.
    Heyland, J., Fu, J., & Blank, L. M. (2009). Microbiology, 155, 3827–3837.CrossRefGoogle Scholar
  75. 75.
    Bellissimi, E., van Dijken, J. P., Pronk, J. T., & van Maris, A. J. A. (2009). FEMS Yeast Research, 9, 358–364.CrossRefGoogle Scholar
  76. 76.
    Casey, E., Sedlak, M., Ho, N. W. Y., & Mosier, N. S. (2010). FEMS Yeast Research, 10, 385–393.CrossRefGoogle Scholar
  77. 77.
    Mira, N. P., Palma, M., Guerreiro, J. F., & Sá-Correia, I. (2010). Microbial Cell Factories, 9, 79–91.CrossRefGoogle Scholar
  78. 78.
    Araya-Secchi, R., Garate, J. A., Holmes, D. S., & Perez-Acle, T. (2011). BMC Genomics, 12(Suppl 4), S8.CrossRefGoogle Scholar
  79. 79.
    Zhang, J. G., Liu, X. Y., He, X. P., Guo, X. N., Lu, Y., & Zhang, B. (2011). Biotechnology Letters, 33, 277–284.CrossRefGoogle Scholar
  80. 80.
    Mira, N. P., Becker, J. D., & Sá-Correia, I. (2010). OMICS, 14, 587–601.CrossRefGoogle Scholar
  81. 81.
    Mira, N. P., Teixeira, M. C., & Sá-Correia, I. (2010). OMICS, 14, 525–540.CrossRefGoogle Scholar
  82. 82.
    Wright, J., Bellisimi, E., Hulster, E., Wagner, A., Pronk, J., & van de Maris, A. J. A. (2011). FEMS Yeast Research, 11, 299–306.CrossRefGoogle Scholar
  83. 83.
    Du, L., Su, Y., Sun, D., Zhu, W., Wang, J., Zhuang, X., et al. (2008). FEMS Yeast Research, 8, 531–539.CrossRefGoogle Scholar
  84. 84.
    Tsiatsiani, L., van Breusegem, F., Gallois, P., Zavialov, A., Lam, E., & Bozhkov, P. V. (2011). Cell Death and Differentiation, 18, 1279–1288.CrossRefGoogle Scholar
  85. 85.
    Madeo, F., Herker, E., Maldener, C., Wissing, S., Lächelt, S., Herlan, M., et al. (2002). Molecular Cell, 9, 911–917.CrossRefGoogle Scholar
  86. 86.
    Overkamp, K. M., Kötter, P., van der Hoek, R., Schoondermark-Stolk, S., Luttik, M. A. H., et al. (2002). Yeast, 19, 509–520.CrossRefGoogle Scholar
  87. 87.
    Geertman, J. M. A., van Dijken, J. P., & Pronk, J. T. (2006). FEMS Yeast Research, 6, 1193–1203.CrossRefGoogle Scholar
  88. 88.
    Salmon, T. B., Evert, B. A., Song, B., & Doetsch, P. W. (2004). Nucleic Acids Research, 32, 3712–3723.CrossRefGoogle Scholar
  89. 89.
    Perrone, G. G., Tan, S. X., & Dawes, I. W. (2008). Biochimica et Biophysica Acta, 1783, 1354–1368.CrossRefGoogle Scholar
  90. 90.
    Carmona-Gutierrez, D., Eisenberg, T., Büttner, S., Meisinger, C., Kroemer, G., & Madeo, F. (2010). Cell Death and Differentiation, 17, 763–773.CrossRefGoogle Scholar
  91. 91.
    Park, S., Koo, H. M., Park, Y. K., Park, S. M., Park, J. C., Lee, O., et al. (2011). Bioresource Technology, 102, 6033–6038.CrossRefGoogle Scholar
  92. 92.
    Heer, D., Heine, D., & Sauer, U. (2009). Applied and Environmental Microbiology, 75, 7631–7638.CrossRefGoogle Scholar
  93. 93.
    Lin, F. M., Qiao, B., & Yuan, Y. J. (2009). Applied and Environmental Microbiology, 75, 3765–3776.CrossRefGoogle Scholar
  94. 94.
    Larsson, S., Quintana-Sáinz, A., Reimann, A., Nilvebrant, N. O., & Jönsson, L. J. (2000). Applied Biochemistry and Biotechnology, 84–86, 617–632.CrossRefGoogle Scholar
  95. 95.
    Alriksson, B., Horváth, I. S., & Jönsson, L. J. (2010). Process Biochemistry, 45, 264–271.CrossRefGoogle Scholar
  96. 96.
    Klinke, H. B., Thomsen, A. B., & Ahring, B. K. (2004). Applied Microbiology and Biotechnology, 66, 10–26.CrossRefGoogle Scholar
  97. 97.
    Endo, A., Nakamura, T., & Shima, J. (2009). FEMS Microbiology Letters, 299, 95–99.CrossRefGoogle Scholar
  98. 98.
    Endo, A., Nakamura, T., Ando, A., Tokuyasu, K., & Shima, J. (2008). Biotechnology for Biofuels, 1, 3–9.CrossRefGoogle Scholar
  99. 99.
    Ji, L., Shen, Y., Xu, L., Peng, B., Xiao, Y., & Bao, X. (2011). Bioresource Technology, 102, 8105–8109.CrossRefGoogle Scholar
  100. 100.
    Larsson, S., Cassland, P., & Jönsson, L. J. (2011). Applied and Environmental Microbiology, 67, 1163–1170.CrossRefGoogle Scholar
  101. 101.
    Ding, J., Huang, X., Zhang, L., Zhao, N., Yang, D., et al. (2009). Applied Microbiology and Biotechnology, 85, 253–263.CrossRefGoogle Scholar
  102. 102.
    Auesukaree, C., Damnernsawad, A., Kruatrachue, M., Pokethitiyook, P., Boonchird, C., Kaneko, Y., et al. (2009). Journal of Applied Genetics, 50, 301–310.CrossRefGoogle Scholar
  103. 103.
    Snowdon, C., Schierholtz, R., Poliszczuk, P., Hughes, S., & van der Merwe, G. (2009). FEMS Yeast Research, 9, 372–380.CrossRefGoogle Scholar
  104. 104.
    Favale, S., Pietromarch, P., & Ciolfi, G. (2007). Vitis, 46, 39–43.Google Scholar
  105. 105.
    Aguilera, A., Chávez, S., & Malagón, F. (2000). Yeast, 16, 731–754.CrossRefGoogle Scholar
  106. 106.
    Gabriel, A., Dapprich, J., Kunkel, M., Gresham, D., Pratt, S. C., & Dunham, M. J. (2006). PLoS Genetics, 2, 2026–2038.CrossRefGoogle Scholar
  107. 107.
    Ames, R. M., Rash, B. M., Hentges, K. E., Robertson, D. L., Delneri, D., & Lovell, S. C. (2010). Genome Biology and Evolution, 2, 591–601.CrossRefGoogle Scholar
  108. 108.
    Fawcett, J. A., & Innan, H. (2011). Genes, 2, 191–209.CrossRefGoogle Scholar
  109. 109.
    Sniegowski, P. D., & Gerrish, P. J. (2010). Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 365, 1255–1263.CrossRefGoogle Scholar
  110. 110.
    Pallone, H., & Viikari, L. (2004). Biotechnology and Bioengineering, 86, 550–557.CrossRefGoogle Scholar
  111. 111.
    Eijsink, V. G. H., Vaaje-Kolstad, G., Varum, K. M., & Horn, S. J. (2008). Trends in Biotechnology, 26, 228–235.CrossRefGoogle Scholar
  112. 112.
    Kobayashi, H., Komanoya, T., Guha, S. K., Hara, K., & Fukuoka, A. (2011). Applied Catalysis A: General, 409–410, 13–20.CrossRefGoogle Scholar
  113. 113.
    Fargues, C., Lewandowaki, R., & Lameloise, M. L. (2010). Industrial and Engineering Chemistry Research, 49, 9248–9257.CrossRefGoogle Scholar
  114. 114.
    Sainio, T., Turku, I., & Heinonen, J. (2011). Bioresource Technology, 12, 6048–6057.CrossRefGoogle Scholar
  115. 115.
    Dehkoda, A. (2008). Master Thesis, University College of Boras, Örnsköldsvik, Sweeden.Google Scholar
  116. 116.
    Jhadav, A., Vamsi, K. K., Khaimar, Y., Boraste, A., Gupta, N., et al. (2009). International Journal of Microbiology Research, 1, 9–12.Google Scholar
  117. 117.
    Tomás-Pejó, E., Oliva, J. M., Ballesteros, M., & Olsson, L. (2008). Biotechnology and Bioengineering, 100, 1122–1131.CrossRefGoogle Scholar
  118. 118.
    Brethauer, S., & Wyman, C. E. (2010). Bioresource Technology, 101, 4862–4874.CrossRefGoogle Scholar
  119. 119.
    Kim, S. R., Lee, K. S., Choi, J. H., Ha, S. J., Kweon, D. H., Seo, J. H., et al. (2010). Journal of Biotechnology, 150, 404–407.CrossRefGoogle Scholar
  120. 120.
    Insa, G., Sablayrolles, J. M., & Douzal, V. (1995). Bioprocess and Biosystems Engineering, 13, 171–176.Google Scholar
  121. 121.
    Stanley, G. A., Douglas, N. G., Every, E. J., Tzanatos, T., & Pamment, N. B. (1993). Biotechnology Letters, 15, 1199–1204.CrossRefGoogle Scholar
  122. 122.
    Zheng, D. Q., Wu, X. C., Tao, X. L., Wang, P. M., & Li, P. (2011). Bioresource Technology, 3, 3020–3027.CrossRefGoogle Scholar
  123. 123.
    Pérez, F., Regodón, J. A., Valdés, M. E., de Miguel, C., & Ramírez, M. (2000). Food Microbiology, 17, 119–128.CrossRefGoogle Scholar
  124. 124.
    Li, J., Zhao, J. B., Zhao, M., Yang, Y. L., Jiang, W. H., & Yang, S. (2010). Applied Microbiology, 50, 373–379.CrossRefGoogle Scholar
  125. 125.
    Steen, E. J., Chan, R., Prasad, N., Myers, S., Petzold, C. J., Redding, A., et al. (2008). Microbial Cell Factories, 7, 36–43.CrossRefGoogle Scholar
  126. 126.
    Wilkins, M. R., & Atiyeh, H. K. (2011). Current Opinion in Biotechnology, 22, 1–5.CrossRefGoogle Scholar
  127. 127.
    Scott, S. A., Davey, M. P., Dennis, J. S., Horst, I., Howe, C. J., Lea-Smith, D. J., et al. (2010). Current Opinion in Biotechnology, 21, 277–286.CrossRefGoogle Scholar
  128. 128.
    Brennan, L., & Owende, P. (2010). Renewable & Sustainable Energy Reviews, 14, 555–577.CrossRefGoogle Scholar
  129. 129.
    Yan, Y., & Liao, J. C. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 471–479.CrossRefGoogle Scholar
  130. 130.
    Amyris: The latest on the U. C. Berkeley-spawned Agrofuel Firm 2011. Available from: www.berkeleydailyplanet.com. Accessed December 02, 2011.

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • C. Laluce
    • 1
    • 2
  • A. C. G. Schenberg
    • 2
  • J. C. M. Gallardo
    • 1
  • L. F. C. Coradello
    • 1
  • S. R. Pombeiro-Sponchiado
    • 1
  1. 1.Department of Biochemistry and Technological Chemistry, Instituto de Química de AraraquaraSao Paulo State University—UNESPAraraquaraBrazil
  2. 2.Pós-graduação Interunidades em Biotecnologia USP/IPT/I. BUTANTANInstituto de Ciências Biomédicas IV-USPSão PauloBrazil

Personalised recommendations