Applied Biochemistry and Biotechnology

, Volume 167, Issue 6, pp 1475–1488 | Cite as

Bioethanol Production Involving Recombinant C. thermocellum Hydrolytic Hemicellulase and Fermentative Microbes

  • Saprativ P. Das
  • Rajeev Ravindran
  • Shadab Ahmed
  • Debasish Das
  • Dinesh Goyal
  • Carlos M. G. A. Fontes
  • Arun Goyal
Article

Abstract

The enhancement of the biomass productivity of Escherichia coli cells harbouring the truncated 903 bp gene designated as glycoside hydrolase family 43 (GH43) from Clostridium thermocellum showing hemicellulase activity along with its further use in simultaneous saccharification and fermentation (SSF) process is described. (Phosphoric acid) H3PO4–acetone treatment and ammonia fibre expansion (AFEX) were the pretreatment strategies employed on the leafy biomass of mango, poplar, neem and asoka among various substrates owing to their high hemicellulose content. GH43 showed optimal activity at a temperature of 50 °C, pH 5.4 with stability over a pH range of 5.0–6.2. A 4-fold escalation in growth of the recombinant E. coli cells was observed when grown using repeated batch strategy in LB medium supplemented with glucose as co-substrate. Candida shehatae utilizing pentose sugars was employed for bioethanol production. AFEX pretreatment proved to be better over acid–acetone technique. The maximum ethanol concentration (1.44 g/L) was achieved for AFEX pretreated mango (1%, w/v) followed by poplar with an ethanol titre (1.32 g/L) in shake flask experiments. A 1.5-fold increase in ethanol titre (2.11 g/L) was achieved with mango (1%, w/v) in a SSF process using a table top 2-L bioreactor with 1 L working volume.

Keywords

Simultaneous saccharification and fermentation (SSF) Repeated batch Glycoside hydrolase family 43(GH43) Clostridium thermocellum H3PO4–acetone AFEX Candida shehatae 

Notes

Acknowledgments

The research work and S. P. Das supported by a project grant from Department of Biotechnology, Ministry of Science and Technology, New Delhi, India to AG is gratefully acknowledged.

References

  1. 1.
    Uihlein, A., & Schbek, L. (2009). Biomass and Bioenergy, 33, 793–802.CrossRefGoogle Scholar
  2. 2.
    Campbell, C. H., & Laherrere, J. H. (1998). Scientific American, 78–83.Google Scholar
  3. 3.
    Lynd, L. R., & Wang, M. Q. (2003). Journal of Industrial Ecology, 7, 17–32.CrossRefGoogle Scholar
  4. 4.
    Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2011). Renewable Energy. doi: 10.1016/j.renene.2011.06.045.
  5. 5.
    Mabee, W. E., & Saddler, J. N. (2010). Bioresource Technology, 101, 4806–4813. Google Scholar
  6. 6.
    Balat, M., Balat, H., & Oz, C. (2008). Progress in Energy and Combustion, 34, 551–573.CrossRefGoogle Scholar
  7. 7.
    Juha, T., Szengyel, Z., Reczey, K., SiikaAho, M., & Viikari, L. (2004). Process Biochemistry, 40, 3519–3525.Google Scholar
  8. 8.
    Mtui, G. Y. S. (2009). African Journal of Biotechnology, 8, 1398–1415.Google Scholar
  9. 9.
    Moniruzzaman, M. (1996). Applied Biochemistry and Biotechnology, 59, 283–297.CrossRefGoogle Scholar
  10. 10.
    Chowdary, G. V., Krishna, S. H., & Reddy, T. J. (2001). Bioresource Technology, 77, 193–196.CrossRefGoogle Scholar
  11. 11.
    Aspinnal, G. O. (1970). In Chemistry of cell wall polysaccharides, vol. 3: The biochemistry of plants (pp. 473–500). New York: Academic.Google Scholar
  12. 12.
    Suzuki, S., Fukuoka, M., Ookuchi, H., Sano, M., & Ozeki, K. (2009). Journal of Bioscience and Bioengineering, 109, 115–117.CrossRefGoogle Scholar
  13. 13.
    Davies, G. J., Gloster, T. M., & Henrissat, B. (2005). Current Opinion in Structural Biology, 15, 637–645.CrossRefGoogle Scholar
  14. 14.
    Cantarel, B. L., Coutinho, P. M., Rancurel, C., & Bernard, T. (2009). Nucleic Acids Research, 37, 233–238.CrossRefGoogle Scholar
  15. 15.
    Xiong, J. S., Balland-Vanney, M., Xie, Z. P., & Schultze, M. (2007). Journal of Experimental Botany, 58, 2799–2810.CrossRefGoogle Scholar
  16. 16.
    Corrall, O. L., & Ortega, F. V. (2006). In: R.G. Guevara-González, I. Torres-Pacheco (Eds.), Advances in agricultural and food biotechnology. Xylanases (pp 305–322). Trivandrum: Research SignpostGoogle Scholar
  17. 17.
    Lairson, L. L., Henrissat, B., Davies, G. J., & Withers, S. G. (2008). Annual Review of Biochemistry, 77, 521–555.CrossRefGoogle Scholar
  18. 18.
    Demain, A. L., Newcomb, M., & Wu, J. H. (2005). Microbiology and Molecular Biology Reviews, 69, 181–186.CrossRefGoogle Scholar
  19. 19.
    Gilbert, H. J., & Fontes, C. M. G. A. (2010). Annual Review of Biochemistry, 79, 655–681.CrossRefGoogle Scholar
  20. 20.
    Abbi, M., Kuhad, R. C., & Singh, A. (1997). Process Biochemistry, 31, 555–560.CrossRefGoogle Scholar
  21. 21.
    Wickerman, L. J. (1951). In Taxonomy of yeasts, US Department of Agriculture Technical Bulletin No. 1029 (pp. 1–56). Washington, DC: US Department of Agriculture.Google Scholar
  22. 22.
    Grodberg, J., & Dunn, J. J. (1988). Journal of Bacteriology, 170, 1245–1253.Google Scholar
  23. 23.
    Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). In Molecular cloning: A laboratory manual, vol. 1 (2nd ed.), Plainview (pp. 1.82–1.84). New York: Cold Spring Harbor Laboratory.Google Scholar
  24. 24.
    Nelson, N. (1944). Journal of Biological Chemistry, 153, 375–380.Google Scholar
  25. 25.
    Somogyi, M. (1945). Journal of Biological Chemistry, 160, 69–73.Google Scholar
  26. 26.
    Laemmli, U. K. (1970). Nature, 227, 680–685.CrossRefGoogle Scholar
  27. 27.
    Numan, M. T., & Bhosle, N. B. (2006). Journal of Industrial Microbiology and Biotechnology, 33, 247–260.CrossRefGoogle Scholar
  28. 28.
    Fan, Z., Werkman, J., & Yuan, L. (2009). Biotechnology Letters, 31, 751–757.CrossRefGoogle Scholar
  29. 29.
    Sun, Y., & Cheng, J. Y. (2002). Bioresource Technology, 83, 1–11.CrossRefGoogle Scholar
  30. 30.
    Bals, B., Rogers, C., Jin, M., Balan, V., & Dale, B. (2010). Biotechnology Biofuels, 3, 1–11.CrossRefGoogle Scholar
  31. 31.
    Bradford, M. (1976) Annals of Biochemistry, 72, 248–254.Google Scholar
  32. 32.
    Seo, H. B., Kim, H. J., & Jung, H. K. (2009). Journal of Industrial Microbiology and Biotechnology, 36, 285–292.CrossRefGoogle Scholar
  33. 33.
    Sluiter, B., Hames, R., Ruiz, C., Scarlata, J., Sluiter, D., & Templeton, D. (2008). In Determination of structural carbohydrates and lignin in substrates, laboratory analytical procedure (LAP). Technical report NREL/TP-510, 42618. Golden: NRELGoogle Scholar
  34. 34.
    Zhang, M., Wang, F., Su, R., Qi, W., & He, Z. (2010). Bioresource Technology, 101, 4959–4964.CrossRefGoogle Scholar
  35. 35.
    Johnston, W., Cord-Ruwisch, R., & Cooney, M. (2002). Bioprocess and Biosystems Engineering, 25, 111–120.CrossRefGoogle Scholar
  36. 36.
    Li, H., Kim, N. J., Jiang, M., Kang, J. W., & Chang, H. N. (2009). Bioresource Technology, 100, 3245–3251.CrossRefGoogle Scholar
  37. 37.
    Howard, R. L., Abotsi, E., Howard, S., & Rensburg, E. L. J. V. (2003). African Journal of Biotechnology, 12, 602–619.Google Scholar
  38. 38.
    Chandel, K., Kapoor, R. K., Kuhad, R. C., & Singh, A. (2007). Bioresource Technology, 98, 1947–1950.CrossRefGoogle Scholar
  39. 39.
    Reddy, H. K., Srijana, M., Reddy, M. D., & Reddy, G. (2010). African Journal of Biotechnology, 9, 1926–1934.Google Scholar
  40. 40.
    Ruiz, E., Cara, C., Ballesteros, M., Manzanares, P., Ballesteros, I., & Castro, E. (2006). Applied Biochemistry and Biotechnology, 129, 631–643.CrossRefGoogle Scholar
  41. 41.
    Santos, D. S., Camelo, A. C., Rodrigues, K. C. P., Carlos, L. C., & Pereira, N., Jr. (2010). Applied Biochemistry and Biotechnology, 161, 93–105.CrossRefGoogle Scholar
  42. 42.
    Lever, M., Ho, G., & CordRuwisch, R. (2010). Bioresource Technology, 101, 7083–7087.CrossRefGoogle Scholar
  43. 43.
    Mutreja, R., Das, D., Goyal, D., & Goyal, A. (2011). Enzyme Research. doi: 10.4061/2011/340279

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Saprativ P. Das
    • 1
  • Rajeev Ravindran
    • 1
  • Shadab Ahmed
    • 1
  • Debasish Das
    • 1
  • Dinesh Goyal
    • 2
  • Carlos M. G. A. Fontes
    • 3
  • Arun Goyal
    • 1
  1. 1.Department of BiotechnologyIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Department of Biotechnology and Environmental SciencesThapar UniversityPatialaIndia
  3. 3.CIISA—Faculdade de Medicina VeterinariaAvenida da Universidade TécnicaLisbonPortugal

Personalised recommendations