Advertisement

Applied Biochemistry and Biotechnology

, Volume 167, Issue 1, pp 122–131 | Cite as

Sago Pith Residue as an Alternative Cheap Substrate for Fermentable Sugars Production

  • S. Linggang
  • L. Y. Phang
  • M. H. Wasoh
  • S. Abd-AzizEmail author
Article

Abstract

Sago pith residue is one of the most abundant lignocellulosic biomass which can serve as an alternative cheap substrate for fermentable sugars production. This residue is the fibrous waste left behind after the starch extraction process and contains significant amounts of starch (58%), cellulose (23%), hemicellulose (9.2%) and lignin (3.9%). The conversion of sago pith residue into fermentable sugars is commonly performed using cellulolytic enzymes or known as cellulases. In this study, crude cellulases were produced by two local isolates, Trichoderma asperellum UPM1 and Aspergillus fumigatus, UPM2 using sago pith residue as substrate. A. fumigatus UPM2 gave the highest FPase, CMCase and β-glucosidase activities of 0.39, 23.99 and 0.78 U/ml, respectively, on day 5. The highest activity of FPase, CMCase and β-glucosidase by T. asperellum UPM1 was 0.27, 12.03 and 0.42 U/ml, respectively, on day 7. The crude enzyme obtained from A. fumigatus UPM2 using β-glucosidase as the rate-limiting enzyme (3.9, 11.7 and 23.4 IU) was used for the saccharification process to convert 5% (w/v) sago pith residue into reducing sugars. Hydrolysis of sago pith residue using crude enzyme containing β-glucosidase with 23.4 IU, produced by A. fumigatus UPM2 gave higher reducing sugars production of 20.77 g/l with overall hydrolysis percentage of 73%.

Keywords

Sago pith residue Crude enzyme Trichoderma asperellum UPM1 Aspergillus fumigatus UPM2 Saccharification 

Notes

Acknowledgements

The authors thank Universiti Putra Malaysia for its financial support throughout this research project.

References

  1. 1.
    Abu Bakar, N. K., Abd-Aziz, S., Hassan, M. A., & Ghazali, F. M. (2010). Biotechnology, 9(1), 73–78.CrossRefGoogle Scholar
  2. 2.
    Apun, K., Salleh, M. A., & Jong, B. C. (2000). Journal of General and Applied Microbiology, 46, 263–267.CrossRefGoogle Scholar
  3. 3.
    Azhari, S. B., Razak, N. A. A., Rahman, N. A. A., Budiatman, S., Shirai, Y., & Hassan, M. A. (2009). Pertanika Journal of Tropical Agricultural Science, 32(2), 143–151.Google Scholar
  4. 4.
    Bernfeld, P. (1955). Amylase, α and β. Methods in Enzymology, 17, 149.CrossRefGoogle Scholar
  5. 5.
    Bujang, K.B. (1997). Regional training course. Hat Yai, Thailand.Google Scholar
  6. 6.
    Gao, J., Weng, H., Zhu, D., Yuan, M., Guan, F., & Xi, Y. (2008). Bioresource Technology, 99(16), 7623–7629.CrossRefGoogle Scholar
  7. 7.
    Goering, H. K., & Van Soest, P. J. (1970). USDA Handbook 379. Washington: Govt. Print Office.Google Scholar
  8. 8.
    Harhangi, H. R., Peter, J. M. S., Akhmanova, A., Jetten, M. S. M., van der Drift, C., & Op den Camp, H. J. M. (2002). Biochimica et Biophysica Acta, 1574(3), 293–303.Google Scholar
  9. 9.
    Howell, J. A. (1978). Biotechnology and Bioengineering, 20, 847–863.CrossRefGoogle Scholar
  10. 10.
    Kadam, S. K., & Demain, A. L. (1989). Biochemical and Biophysical Research Communications, 161, 706–711.CrossRefGoogle Scholar
  11. 11.
    Khan, A. W., Meek, E., & Henschel, J. R. (1985). Enzyme and Microbial Technology, 7, 465–467.CrossRefGoogle Scholar
  12. 12.
    Krishna, C. (1999). Bioresource Technology, 69, 231–239.CrossRefGoogle Scholar
  13. 13.
    Kumaran, S., Sastry, C. A., & Vikineswary, S. (1997). World Journal of Microbiology and Biotechnology, 13(1), 43–49.CrossRefGoogle Scholar
  14. 14.
    Kumoro, A. C., Ngoh, G. C., Hasan, M., Ong, C. H., & Teoh, E. C. (2008). Asian Journal of Scientific Research, 1, 412–420.CrossRefGoogle Scholar
  15. 15.
    Lowry, O. H., Rosebrough, N. J., Farr, A., & Randall, R. J. (1959). Journal of Biological Chemistry, 193, 265–275.Google Scholar
  16. 16.
    Mansfield, S. D., Mooney, C., & Saddler, J. N. (1999). Biotechnol Progress, 15(5), 804–816.CrossRefGoogle Scholar
  17. 17.
    Miller, G. L. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  18. 18.
    Mun, W. K., Rahman, N. A. A., Abd-Aziz, S., Vikineswary, S., & Hassan, M. A. (2008). Research Journal of Microbiology, 3(6), 474–481.CrossRefGoogle Scholar
  19. 19.
    Ozawa, T., Takahiro, O., & Osama, N. (1996). Proceedings of the Sixth International Sago Symposium, Pekan Baru.Google Scholar
  20. 20.
    Palma-Fernandez, E. R. D., Gomes, E., & Da-Silva, R. (2002). Folia Microbiologica, 47, 685–690.CrossRefGoogle Scholar
  21. 21.
    Roslan, A. M., Hassan, M. A., Abd-Aziz, S., & Yee, P. L. (2009). International Journal of Agricultural Research, 4(5), 185–192.CrossRefGoogle Scholar
  22. 22.
    Shahrim, Z., Sabaratnam, V., Rahman, N. A. A., Abd-Aziz, S., Hassan, M. A., & Karim, M. I. A. (2008). Research Journal of Microbiology, 3(9), 569–579.CrossRefGoogle Scholar
  23. 23.
    Sun, Y., & Cheng, J. (2004). Transactions of the ASAE, 47(1), 343–349.Google Scholar
  24. 24.
    Umi Kalsom, M. S., Ariff, A. B., & Zulkifli, H. S. (1997). Bioresource Technology, 62, 1–9.CrossRefGoogle Scholar
  25. 25.
    Vikineswary, S., Abdullah, N., Renuvathani, M., Sekaran, M., Pandey, A., & Jones, E. B. G. (2005). Bioresource Technology, 97, 171–177.CrossRefGoogle Scholar
  26. 26.
    Wood, T. M., & Bhat, K. M. (1988). Methods in Enzymology, 160, 87–112.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • S. Linggang
    • 1
  • L. Y. Phang
    • 1
  • M. H. Wasoh
    • 1
  • S. Abd-Aziz
    • 1
    Email author
  1. 1.Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular SciencesUniversiti Putra MalaysiaUPM SerdangMalaysia

Personalised recommendations