Advertisement

Applied Biochemistry and Biotechnology

, Volume 167, Issue 6, pp 1489–1500 | Cite as

An Evaluation of Chemical Pretreatment Methods for Improving Enzymatic Saccharification of Chili Postharvest Residue

  • Varghese Elizabeth Preeti
  • Soolamkandath Variem Sandhya
  • Mathiyazhakan Kuttiraja
  • Raveendran Sindhu
  • Sankar Vani
  • Sukumaran Rajeev Kumar
  • Ashok Pandey
  • Parameswaran BinodEmail author
Article

Abstract

Residue of chili plants left in the field after harvesting is a major lignocellulosic resource that is underexploited. India has over 0.6 million tons of this residue available as surplus annually which projects it as a potent feedstock for conversion to bioethanol. The cellulose, hemicellulose and lignin content of the chili residues are subject to variations with type of cultivar, geographical region and the season of cultivation, and the composition is critical in developing strategies for its conversion to bioalcohol(s). As with any lignocellulosic biomass, this feedstock needs pretreatment to make it more susceptible to hydrolysis by enzymes which is the most efficient method for generating sugars which can, then, be fermented to alcohol. Pretreatment of chili postharvest residue (CPHR) is, therefore, important though very little study has addressed this challenge. Similarly, enzymatic saccharification of pretreated chili biomass is another area which needs dedicated R&D because the combination of enzyme preparations and the conditions for saccharification are different in different biomass types. The present study was undertaken to develop an optimal process for pretreatment and enzymatic saccharification of CPHR that will yield high amount of free sugars. Dilute acid and alkali pretreatment of the biomass was studied at high temperatures (120–180 °C), with mixing (50–200 rpm) in a high pressure reactor. The holding time was adjusted between 15 and 60 min, and the resultant biomass was evaluated for its susceptibility to enzymatic hydrolysis. Similarly, the conditions for hydrolysis including biomass and enzyme loadings, mixing and incubation time were studied using a Taguchi method of experimentation and were optimized to obtain maximal yield of sugars. Efficiency of pretreatment was gauged by observing the changes in composition and the physicochemical properties of native and pretreated biomass which were analyzed by SEM and XRD analyses. The studies are expected to provide insights into the intricacies of biomass conversion leading to better processes that are simpler and more efficient.

Keywords

Chili postharvest residue Bioethanol Pretreatment Cellulase Biomass hydrolysis Biomass composition 

Notes

Acknowledgments

The authors are grateful to the Technology Information, Forecasting and Assessment Council (TIFAC), Department of Science and Technology, Government of India and Council of Scientific and Industrial Research (CSIR), New Delhi for financial support to the Centre for Biofuels at NIIST. The Authors would like to thank Dr. Sangiliyandi for providing us with Chili post harvest residues. The authors also thank staff of the Electron Microscopy section and the XRD facility of NIIST for SEM and XRD analyses, respectively.

References

  1. 1.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Bioresource Technology, 96, 673–686.CrossRefGoogle Scholar
  2. 2.
    Production & marketing of chillies. Market Survey. March 2009. Available from: www.efymag.com
  3. 3.
    Sukumaran, R. K., Surender, V. J., Sindhu, R., Binod, P., Janu, K. U., Sajna, K. V., Rajasree, K. P., & Pandey, A. (2010). Bioresource Technology, 101, 4826–4833.CrossRefGoogle Scholar
  4. 4.
    Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biotechnology Advances. Article in pressGoogle Scholar
  5. 5.
    Zheng, Y., Zhongli, P., & Zhang, R. (2009). International Journal of Agricultural & Biological Engineering, 2(3), 51–68.Google Scholar
  6. 6.
    Cara, C., Ruiz, E., Oliva, J. M., Saez, F., & Castro, E. (2008). Bioresource Technology, 99, 1869–1876.CrossRefGoogle Scholar
  7. 7.
    Zhu, J. Y., & Pan, X. J. (2010). Bioresource Technology, 101, 4992–5002.CrossRefGoogle Scholar
  8. 8.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., et al. (2008). NREL Technical Report, NREL/TP-510-42618.Google Scholar
  9. 9.
    Segal, L., Creely, J. J., Martin, A. E., & Conrad, C. M. (1959). Journal of Textile Research, 29, 786–794.CrossRefGoogle Scholar
  10. 10.
    Zhou, D., Zhang, L., & Guo, S. (2005). Water Research, 39, 3755–3762.CrossRefGoogle Scholar
  11. 11.
    Focher, B., Palma, M., Canetti, T., Torri, M., Cosentino, G. C., & Gastaldi, G. (2001). Industrial Crops and Products, 13, 193–208.CrossRefGoogle Scholar
  12. 12.
    Miller, G. M. (1959). Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  13. 13.
    Binod, P., Kuttiraja, M., Archana, M., Janu, K. U., Sindhu, R., Sukumaran, R. K., & Pandey, A. (2012). Fuel, 92, 340–345.CrossRefGoogle Scholar
  14. 14.
    Sindhu, R., Binod, P., Nagalakshmi, S., Janu, K. U., Sajna, K. V., Kurien, N., Sukumaran, R. K., & Pandey, A. (2010). Applied Biochemistry and Biotechnology, 162, 2313–2323.CrossRefGoogle Scholar
  15. 15.
    Sindhu, R., Kuttiraja, M., Binod, P., Janu, K. U., Sukumaran, R. K., & Pandey, A. (2011). Bioresource Technology, 102, 10915–10921.CrossRefGoogle Scholar
  16. 16.
    Leenakul, W., & Tippayawong, N. (2010). Journal of Sustainable Energy & Environment, 1, 117–120.Google Scholar
  17. 17.
    Harmsen, P. F. H., Huijgen, W. J. J., Lopez, B. L. M., & Bakker, R. R. C. (2010). Biosynergy, Report 1184.Google Scholar
  18. 18.
    Yoshida, M., Liu, Y., Uchida, S., Kawarada, K., Ukagami, Y., Ichinose, H., Kaneko, S., & Fukuda, K. (2008). Bioscience, Biotechnology, and Biochemistry, 72(3), 805–810.CrossRefGoogle Scholar
  19. 19.
    Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Industrial and Engineering Chemistry Research, 48, 3713–3729.CrossRefGoogle Scholar
  20. 20.
    Guo, G. L., Hsu, D. C., Chen, W. H., Chen, W. H., & Hwang, W. S. (2009). Enzyme and Microbial Technology, 45, 80–87.CrossRefGoogle Scholar
  21. 21.
    Sun, Y., & Cheng, J. (2002). Bioresource Technology, 83, 1–11.CrossRefGoogle Scholar
  22. 22.
    Hendriks, A. T. W. M., & Zeeman, G. (2009). Bioresource Technology, 100, 10–18.CrossRefGoogle Scholar
  23. 23.
    Binod, P., Satyanagalakshmi, K., Sindhu, R., Janu, K.U., Sukumaran, R.K., & Pandey, A. (2012). Renewable Energy, 37, 109-116. in pressGoogle Scholar
  24. 24.
    Satyanagalakshmi, K., Sindhu, R., Binod, P., Janu, K. U., Sukumaran, R. K., & Pandey, A. (2011). Journal of Scientific and Industrial Research, 70, 156–161.Google Scholar
  25. 25.
    Zhang, J., Ma, X., Yu, J., Zhang, X., & Tan, T. (2011). Bioresource Technology, 102, 4585–4589.CrossRefGoogle Scholar
  26. 26.
    Zhu, L. (2005). Ph.D Thesis. Beijing University of Chemical Technology, China.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Varghese Elizabeth Preeti
    • 1
  • Soolamkandath Variem Sandhya
    • 1
  • Mathiyazhakan Kuttiraja
    • 1
  • Raveendran Sindhu
    • 1
  • Sankar Vani
    • 1
  • Sukumaran Rajeev Kumar
    • 1
  • Ashok Pandey
    • 1
  • Parameswaran Binod
    • 1
    Email author
  1. 1.Centre for Biofuels, National Institute for Interdisciplinary Science and Technology, CSIRTrivandrumIndia

Personalised recommendations