Applied Biochemistry and Biotechnology

, Volume 167, Issue 5, pp 1172–1182

Development of Petri Net-Based Dynamic Model for Improved Production of Farnesyl Pyrophosphate by Integrating Mevalonate and Methylerythritol Phosphate Pathways in Yeast

  • Rama Raju Baadhe
  • Naveen Kumar Mekala
  • Satwik Reddy Palagiri
  • Sreenivasa Rao Parcha
Article

Abstract

In this case study, we designed a farnesyl pyrophosphate (FPP) biosynthetic network using hybrid functional Petri net with extension (HFPNe) which is derived from traditional Petri net theory and allows easy modeling with graphical approach of various types of entities in the networks together. Our main objective is to improve the production of FPP in yeast, which is further converted to amorphadiene (AD), a precursor of artemisinin (antimalarial drug). Natively, mevalonate (MEV) pathway is present in yeast. Methyl erythritol phosphate pathways (MEP) are present only in higher plant plastids and eubacteria, but not present in yeast. IPP and DAMP are common isomeric intermediate in these two pathways, which immediately yields FPP. By integrating these two pathways in yeast, we augmented the FPP synthesis approximately two folds higher (431.16 U/pt) than in MEV pathway alone (259.91 U/pt) by using HFPNe technique. Further enhanced FPP levels converted to AD by amorphadiene synthase gene yielding 436.5 U/pt of AD which approximately two folds higher compared to the AD (258.5 U/pt) synthesized by MEV pathway exclusively. Simulation and validation processes performed using these models are reliable with identified biological information and data.

Keywords

Amorpha diene Artemisinin Farnesyl pyrophosphate Hybrid functional Petri net with extensions Methylerythritol phosphate pathway Mevalonate Pathway 

Abbreviations

AD

Amorphadiene

HFPNe

Hybrid functional Petri net with extension

MEV

Mevalonate

MEP

Methylerithritol 4-phosphate

FPP

Farnesyl pyrophosphate

IPP

Isopentenyl pyrophosphate

DMAPP

Dimethylallyl pyrophosphate

GPP

Geranyl pyrophosphate

References

  1. 1.
    Dubey, V. S., Bhalla, R., & Luthra, R. (2003). Journal of Biosciences, 28, 637–646.CrossRefGoogle Scholar
  2. 2.
    Michelle, C. Y., Chang, J., & Keasling, D. (2006). Nature Chemical Biology, 2, 674–681.CrossRefGoogle Scholar
  3. 3.
    Kitano, H. (2002). Science, 295, 1662–1664.CrossRefGoogle Scholar
  4. 4.
    Sweetlove, L. J., Last, R. L., & Fernie, A. R. (2003). Plant Physiology, 132, 420–425.CrossRefGoogle Scholar
  5. 5.
    Sweetlove, L. J., & Fernie, A. R. (2005). New Phytologist, 168, 9–24.CrossRefGoogle Scholar
  6. 6.
    Hawari, A. H., & Mohamed-Hussein, Z. A. (2010). BMC Bioinformatics, 11, 83.CrossRefGoogle Scholar
  7. 7.
    Teaching Metabolic Control Analysis and Kinetic Modeling 1999. Available from: www.gepasi.org/TeachingMCA.pdf. Accessed February 14, 2011.
  8. 8.
    Koch, I., Heiner, M. (2008) Petri nets, 1st edition: Analysis of Biological Networks (Junker, B, H., Schreiber, F) Wiley, Hoboken, NJ, USA.Google Scholar
  9. 9.
    Gilbert, D., FuB, H., Gu, X., Orton, R., & Robinson, S. (2006). Briefings in Bioinformatics, 7(4), 339–353.CrossRefGoogle Scholar
  10. 10.
    Goryanin, I., Hodgman, T. C., & Selkov, E. (1999). Bioinformatics, 15(9), 749–758.CrossRefGoogle Scholar
  11. 11.
    Rohdich, F., Hecht, S., Gartner, K., & Adam, P. (2002). Proceedings of the National Academy of Science of the U.S.A, 99(3), 1158–1163.CrossRefGoogle Scholar
  12. 12.
    Voynova, N. E., Rios, S. E., & Miziorko, H. M. (2004). Journal of Bacteriology, 186(1), 61–67.CrossRefGoogle Scholar
  13. 13.
    Schulte, A. E., Heijden, V. D. R., & Verpoorte, R. (1999). Phytochemistry, 52(6), 975–983.CrossRefGoogle Scholar
  14. 14.
    Petri, C. A. (1962). Technical Report RADC-TR-65-377, 2. New York, US: Griffiss Air Force Base.Google Scholar
  15. 15.
    Hiroshi, M., Yukiko, T., Hitoshi, A., & Satoru, M. (2003). In Silico Biology, 3, 389–404.Google Scholar
  16. 16.
    Ina, K., Bjorn, H. J., & Monika, H. (2005). Bioinformatics, 21, 1219–1226.CrossRefGoogle Scholar
  17. 17.
    Kanehisa, M., Araki, M., Goto, S., Hattori, M., & Yamanishi, Y. (2008). Nucleic Acids Research, 36, D480–D484.CrossRefGoogle Scholar
  18. 18.
    Kanehisa, M., & Goto, S. (2000). Nucleic Acids Research, 28(1), 27–30.CrossRefGoogle Scholar
  19. 19.
    Kanehisa, M., Goto, S., Hattori, M., Aoki-Kinoshita, K. F., & Hirakawa, M. (2006). Nucleic Acids Research, 34, D354–D357.CrossRefGoogle Scholar
  20. 20.
    Chang, A., Scheer, M., Grote, A., & Schomburg, D. (2009). Nucleic Acids Research, 37, D588–D592.CrossRefGoogle Scholar
  21. 21.
    Caspi, R., Foerster, H., Fulcher, C. A., Kaipa, P., Krummenacker, M., & Tissier, C. (2008). Nucleic Acids Research, 36, D623–D631.CrossRefGoogle Scholar
  22. 22.
    Nagasaki, M. (2004), PhD Thesis, University of Tokyo, Japan.Google Scholar
  23. 23.
    Miyano, S. 2004.25th International Conference on Application and Theory of Petri nets Bologna, Italy. Available from: http://genome.ib.sci.yamaguchi-u.ac.jp/~gon/presentation/ICATPN2004.pdf. Accessed February16, 2011.
  24. 24.
    Newman, J. D., & Chappel, J. (1999). Critical Reviews in Biochemistry and Molecular Biology, 34, 95–106.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Rama Raju Baadhe
    • 1
  • Naveen Kumar Mekala
    • 1
  • Satwik Reddy Palagiri
    • 2
  • Sreenivasa Rao Parcha
    • 1
  1. 1.Department of BiotechnologyNational Institute of TechnologyWarangalIndia
  2. 2.Arkabio Research TechnologiesHyderabadIndia

Personalised recommendations