Applied Biochemistry and Biotechnology

, Volume 167, Issue 6, pp 1595–1602 | Cite as

Degradation of Polyurethane by Aspergillus flavus (ITCC 6051) Isolated from Soil

  • Garima Mathur
  • Ramasare PrasadEmail author


The present study deals with the isolation of fungi from soil with the ability to degrade polyurethane (PU). A pure fungal isolate was analyzed for its ability to utilize PU as a sole carbon source in shaking culture for 30 days. Incubation of PU with Aspergillus flavus resulted in 60.6% reduction in weight of PU. The scanning electron microscopy and Fourier transform infrared spectroscopy (FTIR) results showed certain changes on the surface of PU film and formation of some new intermediate products after polymer breakdown. Thermogravimetric curves showed changes between the thermal behavior of the samples that were inoculated with A. flavus and control. FTIR spectra showed detectable changes in control and incubated samples, suggesting that degradation occurs, with the decreased intensity of band at 1,715 cm−1, corresponding to ester linkages. We have identified an extracellular esterase activity which might be responsible for the polyurethanolytic activity.


Aspergillus Polyurethane Biodegradation Esterase 


  1. 1.
    Howard, G. T. (2002). International Biodeterioration and Biodegradation, 49, 245–252.CrossRefGoogle Scholar
  2. 2.
    Saunders, H., & Frisch, K. C. (1964). Chemistry and technology, part II: technology. New York: Interscience Publishers.Google Scholar
  3. 3.
    Nakajima-Kambe, T., Shigeno-Akustu, Y., Nomura, N., Onuma, F., & Nakahara, T. (1999). Applied Microbiology and Biotechnology, 51, 134–140.CrossRefGoogle Scholar
  4. 4.
    Russell, J. R., Huang, J., Anand, P., Kucera, K., Sandoval, A. G., Dantzler, K. W., Hickman, D., Jee, J., Kimovec, F. M., Koppstein, D., Marks, D. H., Mittermiller, P. A., Núñez, S. J., Santiago, M., Townes, M. A., Vishnevetsky, M., Williams, N. E., Vargas, M. P., Boulanger, L. A., Bascom-Slack, C., & Strobel, S. A. (2011). Applied and Environmental Microbiology, 77, 6076–6084.CrossRefGoogle Scholar
  5. 5.
    Morton, L.H.G. and Surman, B. (1994). International Biodeterioration Biodegradation, 32, 203–221.Google Scholar
  6. 6.
    Barratt, S. R., Ennos, A. R., Greenhalgh, Robson, G. D., & Handley, P. S. (2003). Journal of Applied Microbiology, 95, 78–85.CrossRefGoogle Scholar
  7. 7.
    Crabbe, J. R., Campbell, J. R., Thompson, L., Walz, S. L., & Schultz, W. W. (1994). International Biodeterioration and Biodegradation, 33, 103–113.CrossRefGoogle Scholar
  8. 8.
    Darby, R. T., & Kaplan, A. M. (1968). Applied Microbiology, 16, 900–905.Google Scholar
  9. 9.
    Ossefort, Z. T., & Testroet, F. B. (1966). Rubber Chem. Technol, 39, 1308–1327.Google Scholar
  10. 10.
    Aamer, A. S., Fariha, H., Javed, I. Q., Abdul, H., & Safia, A. (2008). Annals of Microbiology, 58, 381–386.CrossRefGoogle Scholar
  11. 11.
    Akutsu, Y., Nakajima-Kambe, T., Nomura, N., & Nakahara, T. (1998). Applied and Environmental Microbiology, 64, 62–67.Google Scholar
  12. 12.
    Allen, A. B., Hilliard, N. P., & Howard, G. T. (1999). International Biodeterioration and Biodegradation, 43, 37–41.CrossRefGoogle Scholar
  13. 13.
    Blake, R. C., & Howard, G. T. (1998). International Biodeterioration and Biodegradation, 42, 63–73.CrossRefGoogle Scholar
  14. 14.
    Kay, M. J., McCabe, R. W., & Morton, L. H. G. (1993). International Biodeterioration and Biodegradation, 31, 209–225.CrossRefGoogle Scholar
  15. 15.
    Nakajima-Kambe, T., Onuma, F., Akutsu, Y., & Nakahara, T. (1997). Journal of Fermentation and Bioengineering, 83, 456–460.CrossRefGoogle Scholar
  16. 16.
    Gautam, R., Bassi, A. S., Yanful, E. K., & Cullen, E. (2007). International Biodeterioration and Biodegradation, 60, 245–249.CrossRefGoogle Scholar
  17. 17.
    Araceli, L.-T., Gilberto, G., Abraham, V.-T., Raúl, R.-H., & Cristóbal, N. A. (2011). Adv Bioscience Biotechnol, 2, 52–58.CrossRefGoogle Scholar
  18. 18.
    Wales, D. S., & Sagar, B. R. (1988). In D. R. Houghton, R. N. Smith, & H. O. W. Eggins (Eds.), Biodeterioration (7th ed., pp. 351–358). London: Elsevier Applied Science.CrossRefGoogle Scholar
  19. 19.
    Ruiz, C., Main, T., Hilliard, N., & Howard, G. T. (1999). International Biodeterioration and Biodegradation, 43, 43–47.CrossRefGoogle Scholar
  20. 20.
    Howard, G. T., & Blake, R. C. (1999). International Biodeterioration and Biodegradation, 42, 213–220.CrossRefGoogle Scholar
  21. 21.
    Kordel, M., Hofmann, B., Schomburg, D., & Schmid, R. D. (1991). Journal of Bacteriology, 173, 4836–4841.Google Scholar
  22. 22.
    Lagauskas, L. L., & Pečiulytė, D. (2009). International Biodeterioration and Biodegradation, 52, 233–242.CrossRefGoogle Scholar
  23. 23.
    Alejandro, O.-C., Agustín, C.-G., Néstor, L., Sandra, B.-N., Javier, C.-G., Carmen, W., & Herminia, L.-T. (2007). Applied and Environmental Microbiology, 73, 6214–6223.CrossRefGoogle Scholar
  24. 24.
    Ibrahim, N. I., Anwar, M., Khalid, M., Hameed, I. M., Saadoun, H. M. M., & Toshiaki, N.-K. (2009). Adv Environ Biol, 3, 162–170.Google Scholar
  25. 25.
    Pathirana, R. A., & Seal, K. J. (1985). International Biodeterioration, 21, 123–125.Google Scholar
  26. 26.
    Filip, Z. (1979). European Journal of Applied Microbiology and Biotechnology, 7, 277–280.CrossRefGoogle Scholar
  27. 27.
    José, M. C., Salvador, C. N., & Gilberto, O. C. (2006). Polímeros: Ciência e Tecnologia, 16, 129–135.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of BiotechnologyJaypee Institute of Information TechnologyNoidaIndia
  2. 2.Department of BiotechnologyIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations