Applied Biochemistry and Biotechnology

, Volume 167, Issue 5, pp 1314–1324 | Cite as

Newly Isolated Lactic Acid Bacteria with Probiotic Features for Potential Application in Food Industry

  • Jayakumar Beena Divya
  • Kontham Kulangara Varsha
  • Kesavan Madhavan NampoothiriEmail author


Five newly isolated lactic acid bacteria were identified as Weissella cibaria, Enterococcus faecium, and three different strains of Lactobacillus plantarum by 16S rRNA sequencing. Essential probiotic requirements of these isolates such as tolerance to phenol, low pH, high sodium chloride, and bile salt concentration were checked. Efficiency in adherence to mucin and hydrophobicity of the bacterial cell were also evaluated by in vitro studies. Antimicrobial activities against some pathogens were tried, and the sensitivity of these strains against 25 different antibiotics was also checked. Further studies revealed Weissella and Enterococcus as substantial producers of folic acid. Folate is involved as a cofactor in many metabolic reactions, and it has to be an essential component in the human diet. The folate level in the fermented samples was determined by microbiological assay using Lactobacillus casei NCIM 2364 as indicator strain. The three strains of L. plantarum showed significant inhibitory activity against various fungi that commonly contaminate food stuffs indicating their potential as a biopreservative of food material.


Lactic acid bacteria Probiotics Folic acid Bioavailability Antifungal Biopreservative 



Research fellowships from the Council of Scientific and Industrial Research (CSIR), New Delhi, India, Department of Science and Technology (DST), New Delhi, India, and Kerala State Council for Science, Technology and Environment (KSCSTE), India, were greatly acknowledged. The research grant from the Department of Biotechnology (DBT), New Delhi, to initiate probiotic research is greatly appreciated.


  1. 1.
    Briand, V. R., Buffet, P., Genty, S., Lacombe, K., Godineau, N., Salomon, J., Vandemelbrouck, E., Ralaimazava, P., Goujon, C., Matheron, S., Fontanet, A., & Bouchaud, O. (2006). Clinical Infectious Diseases, 43, 1170–1175.CrossRefGoogle Scholar
  2. 2.
    Myllyluoma, E., Ahlroos, T., Veijola, L., & Rautelin, H. (2007). International Journal of Antimicrobial Agents, 29, 66–72.CrossRefGoogle Scholar
  3. 3.
    Madden, J. A. J., Plummer, S. F., Tang, J., Garaiova, I., Plummer, N. T., Herbison, M., Hunter, J. O., Shimada, T., Cheng, L., & Shirakawa, T. (2005). International Immunopharmacology, 5, 1091–1097.CrossRefGoogle Scholar
  4. 4.
    Camilleri, M. (2006). Journal of Clinical Gastroenterology, 40, 264–269.CrossRefGoogle Scholar
  5. 5.
    Baken, K. A., Ezendam, J., Gremmer, E. R., De Klerk, A., Pennings, J. L. A., Matthee, B., Peijnenburg, A. C. M., & Van Loveren, H. (2006). International Journal of Food Microbiology, 112, 8–18.CrossRefGoogle Scholar
  6. 6.
    Zanini, K., Marzotto, M., Castellazzi, A., Borsari, A., Dellaglio, F., & Torriani, S. (2007). International Dairy Journal, 17, 1332–1343.CrossRefGoogle Scholar
  7. 7.
    Chen, C., Chan, H. M., & Kubow, S. (2007). Journal of Medicinal Food, 10, 416–422.CrossRefGoogle Scholar
  8. 8.
    Linsalata, M., Cavallini, A., Messa, C., Orlando, A., Refolo, M. G., & Russo, F. (2010). Current Pharmaceutical Design, 16, 847–853.CrossRefGoogle Scholar
  9. 9.
    Hsieh, M. L., & Chou, C. C. (2006). International Journal of Food Microbiology, 111, 43–47.CrossRefGoogle Scholar
  10. 10.
    Xiao, J. Z., Kondo, S., Takahashi, N., Miyaji, K., Oshida, K., Hiramatsu, A., Iwatsuki, K., Kokubo, S., & Hosono, A. (2003). Journal of Dairy Science, 86, 2452–2461.CrossRefGoogle Scholar
  11. 11.
    Liong, M. T., & Shah, N. P. (2005). Journal of Dairy Science, 88, 55–66.CrossRefGoogle Scholar
  12. 12.
    Barker, S. B., & Summerson, W. H. (1941). Journal of Biological Chemistry, 138, 535–554.Google Scholar
  13. 13.
    Horne, D. W. (1997). Methods in Enzymology, 281, 38–43.CrossRefGoogle Scholar
  14. 14.
    Wilson, S., & Horne, D. W. (1982). Clinical Chemistry, 28, 1198–1200.Google Scholar
  15. 15.
    Horne, D. W., & Patterson, D. (1988). Clinical Chemistry, 34, 2357–2359.Google Scholar
  16. 16.
    Schillinger, U., & Villarreal, J. V. (2008). Food Control, 21, 107–111.CrossRefGoogle Scholar
  17. 17.
    Magnusson, J., Strom, K., Roos, S., Sjogren, J., & Schnurer, J. (2003). FEMS Microbiology Letters, 219, 129–135.CrossRefGoogle Scholar
  18. 18.
    Thapa, P. B., Gideon, P., Cost, T. W., Milam, A. B., & Ray, W. A. (1998). The New England Journal of Medicine, 339, 875–882.CrossRefGoogle Scholar
  19. 19.
    Roos, S., & Jonsson, H. (2002). Microbiology, 148, 433–442.Google Scholar
  20. 20.
    Del Re, B., Sgorbati, B., Miglioli, M., & Palenzona, D. (2000). Letters in Applied Microbiology, 31, 438–442.CrossRefGoogle Scholar
  21. 21.
    Handley, P. S., Harty, D. W. S., Wyatt, J. E., Brown, C. R., Doran, J. P., & Gibbs, A. C. C. (1987). Journal of General Microbiology, 133, 3207–3217.Google Scholar
  22. 22.
    Institute of Medicine. (1998). Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B6, folate, vitamin B12, panthothenic acid, biotin, and choline. Washington, DC: National Academies Press.Google Scholar
  23. 23.
    FAO/WHO (2002). Human vitamin and mineral requirements, Bangkok, Thailand.Google Scholar
  24. 24.
    Sybesma, W., Starrenburg, M., Tisseling, L., Hoefnagel, M. H. N., & Hugenholtz, J. (2003). Applied and Environmental Microbiology, 69, 4542–4548.CrossRefGoogle Scholar
  25. 25.
    Rao, D. R., Reddy, A. V., Pulusani, S. R., & Cornwell, P. E. (1984). Journal of Dairy Science, 67, 1169–1174.CrossRefGoogle Scholar
  26. 26.
    Cabo, M. L., Braber, A. F., & Koenraad, P. M. F. J. (2002). Journal of Food Protection, 65, 1309–1316.Google Scholar
  27. 27.
    Strom, K., Sjogren, J., Broberg, A., & Schnurer, J. (2002). Applied and Environmental Microbiology, 68, 4322–4327.CrossRefGoogle Scholar
  28. 28.
    Dalie, D. K. D., Deschamps, A. M., & Richard-Forget, F. (2009). Food Control, 21, 370–380.CrossRefGoogle Scholar
  29. 29.
    Talarico, T. L., & Dobrogosz, W. J. (1989). Antimicrobial Agents and Chemotherapy, 33, 674–679.CrossRefGoogle Scholar
  30. 30.
    Vollenweider, S., & Lacroix, C. (2004). Applied Microbiology and Biotechnology, 64, 16–27.CrossRefGoogle Scholar
  31. 31.
    Dunne, C. L., Mahony, M., Thornton, G., Morrisey, D., Hallorans, S., Feeney, M., Flynn, S., Kiely, B., Daly, C., & Collins, K. (2001). American Journal of Clinical Nutrition, 73, 386–392.Google Scholar
  32. 32.
    Gomez-Zavaglia, A., Kociubinski, G., Perez, P., & De Antoni, G. (1998). Journal of Food Protection, 61, 865–873.Google Scholar
  33. 33.
    Akhiar, N. S. A. M. (2010). Basic Biotechnology eJournal, 6.Google Scholar
  34. 34.
    Suskovic, J., Brkic, B., Matosic, S., & Maric, V. (1997). Milchwissenschaft, 52, 430–435.Google Scholar
  35. 35.
    Cavin, J. F., Andioc, V., Etievant, P. X., & Divies, C. (1993). American Journal of Enology and Viticulture, 44, 76–80.Google Scholar
  36. 36.
    Aswathy, R. G., Ismail, B., John, R. P., & Nampoothiri, K. M. (2008). Applied Biochemistry and Biotechnology, 151, 244–255.CrossRefGoogle Scholar
  37. 37.
    Adnan, A. F. M., & Tan, I. K. P. (2007). Bioresource Technology, 98, 1380–1385.CrossRefGoogle Scholar
  38. 38.
    Vinderola, C. G., & Reinheimer, J. A. (2003). Food Research International, 36, 895–904.CrossRefGoogle Scholar
  39. 39.
    Orlowski, A., & Bielecka, M. (2006). Polish Journal of Food and Nutrition Sciences, 15, 269–276.Google Scholar
  40. 40.
    Otero, M. C., Ocana, V. S., & Macias, E. N. M. (2004). Methods in Molecular Biology, 268, 435–440.Google Scholar
  41. 41.
    Martin, R., Olivares, M., Marin, M. L., & Fernandez, L. (2005). Journal of Human Lactation, 21, 8–17.CrossRefGoogle Scholar
  42. 42.
    Jankovic, I., Ventura, M., Meylan, V., Rouvet, M., Elli, M., & Zink, R. (2003). Journal of Bacteriology, 185, 3288–3296.CrossRefGoogle Scholar
  43. 43.
    Nikolic, M., Jovcic, B., Kojic, M., & Topisirovic, L. (2010). European Food Research and Technology, 231, 925–931.CrossRefGoogle Scholar
  44. 44.
    Majhenic, A. C., & Matijasic, B. B. (2001). Mljekarstvo, 51, 119–134.Google Scholar
  45. 45.
    Zhou, J. S., Shu, Q., Rutherfurd, K. J., Prasad, J., Birtles, M., Gopal, P. K., & Gill, H. S. (2000). International Journal of Food Microbiology, 56, 87–96.CrossRefGoogle Scholar
  46. 46.
    Tambekar, D. H., & Bhutad, S. A. (2010). Recent Research in Science and Technology, 2, 82–88.Google Scholar
  47. 47.
    EI-Naggar, M. Y. M. (2004). Biotechnology, 3, 173–180.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Jayakumar Beena Divya
    • 1
  • Kontham Kulangara Varsha
    • 1
  • Kesavan Madhavan Nampoothiri
    • 1
    Email author
  1. 1.Biotechnology DivisionNational Institute for Interdisciplinary Science and Technology (NIIST), CSIRTrivandrumIndia

Personalised recommendations