Applied Biochemistry and Biotechnology

, Volume 166, Issue 6, pp 1562–1574 | Cite as

Effects of Wort Gravity and Nitrogen Level on Fermentation Performance of Brewer’s Yeast and the Formation of Flavor Volatiles

Article

Abstract

Normal gravity wort and high gravity wort with different nitrogen levels were used to examine their effects on the fermentation performance of brewer’s yeast and the formation of flavor volatiles. Results showed that both the wort gravity and nitrogen level had significant impacts on the growth rate, viability, flocculation, and gene expression of brewer’s yeast and the levels of flavor volatiles. The sugar (glucose, maltose, and maltotriose) consumption rates and net cell growth decreased when high gravity worts were used, while these increased with increasing nitrogen level. Moreover, high gravity resulted in lower expression levels of ATF1, BAP2, BAT1, HSP12, and TDH, whereas the higher nitrogen level caused higher expression levels for these genes. Furthermore, the lower nitrogen level resulted in increases in the levels of higher alcohols and esters at high wort gravity. All these results demonstrated that yeast physiology and flavor balance during beer brewing were significantly affected by the wort gravity and nitrogen level.

Keywords

Wort gravity Nitrogen level Yeast physiology Fermentation performance Flavor volatiles 

References

  1. 1.
    Gibson, B. R., Lawrence, S. J., Leclaire, J. P. R., Powell, C. D., & Smart, K. A. (2007). Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiology Reviews, 31, 535–569.CrossRefGoogle Scholar
  2. 2.
    Carvalho, G. B. M., Silva, D. P., Bento, C. V., Vicente, A. A., Teixeira, J. A., Felipe, M. G. A., & Silva, J. B. A. (2009). Banana as adjunct in beer production: applicability and performance of fermentative parameters. Applied Biochemistry and Biotechnology, 155, 356–365.CrossRefGoogle Scholar
  3. 3.
    O’Connor-Cox, E. S. C., & Ingledew, W. M. (1991). Alleviation of the effects of nitrogen limitation in high gravity worts through increased inoculation rates. Journal of Industrial Microbiology and Biotechnology, 7, 89–96.Google Scholar
  4. 4.
    Sankh, S. N., Deshpande, P. S., & Arvindekar, A. U. (2011). Improvement of ethanol production using Saccharomyces cerevisiae by enhancement of biomass and nutrient supplementation. Applied Biochemistry and Biotechnology, 164, 1237–1245.CrossRefGoogle Scholar
  5. 5.
    Lekkas, C., Stewart, G. G., Hill, A. E., Taidi, B., & Hodgson, J. (2007). Elucidation of the role of nitrogenous wort components in yeast fermentation. Journal of the Institute of Brewing, 113, 3–8.Google Scholar
  6. 6.
    Boulton, C., & Quain, D. (2001). Brewing yeast and fermentation. Oxford: Blackwell Science.Google Scholar
  7. 7.
    Ivorra, C., Perez-Ortin, J. E., & del Olmo, M. (1999). An inverse correlation between stress resistance and stuck fermentations in wine yeasts. A molecular study. Biotechnology and Bioengineering, 64, 698–708.CrossRefGoogle Scholar
  8. 8.
    McAlister, L., & Holland, M. J. (1985). Isolation and characterization of yeast strains carrying mutations in the glyceraldehyde-3-phosphate dehydrogenase genes. Journal of Biological Chemistry, 28, 15013–15018.Google Scholar
  9. 9.
    Smits, H. P., Hauf, J., Müller, S., Hobley, T. J., Zimmermann, F. K., Hahn-Hägerdal, B., Nielsen, J., & Olsson, L. (2000). Simultaneous overexpression of enzymes of the lower part of glycolysis can enhance the fermentative capacity of Saccharomyces cerevisiae. Yeast, 16, 1325–1334.CrossRefGoogle Scholar
  10. 10.
    Landaud, S., Latrille, E., & Corrieu, G. (2001). Top pressure and temperature control of the fusel alcohol/ester ratio through yeast growth in beer fermentation. Journal of the Institute of Brewing, 10, 107–117.Google Scholar
  11. 11.
    Kodama, Y., Omura, K., & Ashikari, T. (2001). Control of higher alcohol production by manipulation of the BAP2 gene in brewing yeast. Journal of the American Society of Brewing Chemists, 59, 157–162.Google Scholar
  12. 12.
    Lilly, M., Bauer, F. F., Styger, G., Lambrechts, M. G., & Pretorius, I. S. (2006). The effect of increased branched-chain amino acids transaminase activity in yeast on the production of higher alcohols and on the flavour profiles of wine and distillates. FEMS Yeast Research, 6, 726–743.CrossRefGoogle Scholar
  13. 13.
    Calderbank, J., & Hammond, J. R. M. (1994). Influence of higher alcohol availability on ester formation by yeast. Journal of the American Society of Brewing Chemists, 52, 84–90.Google Scholar
  14. 14.
    Fuji, T., Kobayashi, O., Yoshimoto, H., Furukawa, S., & Tamai, Y. (1997). Effect of aeration and unsaturated fatty acids on expression of the Saccharomyces cerevisiae alcohol acetyltransferase gene. Applied and Environmental Microbiology, 63, 910–915.Google Scholar
  15. 15.
    Kourkoutas, Y., McErlean, C., Kanellaki, M., Hack, C. J., Marchant, R., Banat, I. M., & Koutinas, A. A. (2004). High-temperature wine making using the thermotolerant yeast strain Kluyveromyces marxianus IMB3. Applied Biochemistry and Biotechnology, 112, 25–35.CrossRefGoogle Scholar
  16. 16.
    Verbelen, P. J., Dekoninck, T. M. L., Saerens, S. M. G., Van Mulders, S. E., Thevelein, J. M., & Delvaux, F. R. (2009). Impact of pitching rate on yeast fermentation performance and beer flavor. Applied Microbiology and Biotechnology, 82, 155–167.CrossRefGoogle Scholar
  17. 17.
    Saerens, S. M. G., Verbelen, P. J., Vanbeneden, N., Thevelein, J. M., & Delvaux, F. R. (2008). Monitoring the influence of high-gravity brewing and fermentation temperature on flavor formation by analysis of gene expression levels in brewing yeast. Applied Microbiology and Biotechnology, 80, 1039–1051.CrossRefGoogle Scholar
  18. 18.
    Piddocke, M. P., Kreisz, S., Heldt-Hansen, H. P., Nielsen, K. F., & Olsson, L. (2009). Physiological characterization of brewer’s yeast in high-gravity beer fermentations with glucose or maltose syrups as adjuncts. Applied Microbiology and Biotechnology, 84, 453–464.CrossRefGoogle Scholar
  19. 19.
    Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29, 2002–2007.CrossRefGoogle Scholar
  20. 20.
    Pinho, O., Ferreira, I. M. P. L. V. O., & Santos, L. H. M. L. M. (2006). Method optimization by solid-phase microextraction in combination with gas chromatography with mass spectrometry for analysis of beer volatile fraction. Journal of Chromatography. A, 1121, 145–153.CrossRefGoogle Scholar
  21. 21.
    Powell, C. D., Quain, D. E., & Smart, K. A. (2003). The impact of brewing yeast cell age on fermentation performance, attenuation and flocculation. FEMS Yeast Research, 3, 149–157.CrossRefGoogle Scholar
  22. 22.
    Verstrepen, K. J., Derdelinckx, G., Verachtert, H., & Delvaux, F. R. (2003). Yeast flocculation: what brewers should know. Applied Microbiology and Biotechnology, 61, 197–205.Google Scholar
  23. 23.
    Wei, M., Fabrizio, P., Hu, J., Ge, H., Cheng, C., Li, L., & Longo, V. D. (2008). Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of Ras/PKA, Tor and Sch9. PLoS Genetics, 4, 139–149.CrossRefGoogle Scholar
  24. 24.
    Zastrow, C. R., Hollatz, C., de Araujo, P. S., & Stambuk, B. U. (2001). Maltotriose fermentation by Saccharomyces cerevisiae. Journal of Industrial Microbiology and Biotechnology, 27, 34–38.CrossRefGoogle Scholar
  25. 25.
    Dietvorst, J., Blieck, L., Brandt, R., Van Dijck, P., & Steensma, H. (2007). Attachment of MAL32-encoded maltase on the outside of yeast cells improves maltotriose utilization. Yeast, 24, 27–32.CrossRefGoogle Scholar
  26. 26.
    Rautio, J., & Londesborough, J. (2003). Maltose transport by brewer’s yeasts in brewer’s wort. Journal of the Institute of Brewing, 109, 251–261.Google Scholar
  27. 27.
    Briggs, D. E., Boulton, C. A., Brookes, P. A., & Stevens, R. (2004). Brewing: science and practice. Cambridge: Woodhead.CrossRefGoogle Scholar
  28. 28.
    Pierce, J. S. (1987). The role of nitrogen in brewing. Journal of the Institute of Brewing, 93, 378–381.Google Scholar
  29. 29.
    Perpète, P., Santos, G., Bodart, E., & Collin, S. (2005). Uptake of amino acids during beer production: the concept of a critical time value. Journal of the American Society of Brewing Chemists, 63, 23–27.Google Scholar
  30. 30.
    Stewart, G. G. (2007). The influence of high gravity wort on the stress characteristics of brewer’s yeast and related strains. Cerevisia, 32, 37–48.Google Scholar
  31. 31.
    Saerens, S. M. G., Delvaux, F., Verstrepen, K. J., Van Dijck, P., Thevelein, J. M., & Delvaux, F. R. (2008). Parameters affecting ethyl ester production by Saccharomyces cerevisiae during fermentation. Applied and Environmental Microbiology, 74, 451–461.CrossRefGoogle Scholar
  32. 32.
    Younis, O. S., & Stewart, G. G. (1998). Sugar uptake and subsequent ester and higher alcohol production by Saccharomyces cerevisiae. Journal of the Institute of Brewing, 104, 255–264.Google Scholar
  33. 33.
    Shindo, S., Murakani, J., & Koshino, S. (1992). Control of acetate ester formation during alcohol fermentation with immobilized yeast. Journal of Fermentation and Bioengineering, 73, 370–374.CrossRefGoogle Scholar
  34. 34.
    Verstrepen, K. J., Van Laere, S. D. M., Vanderhaegen, B. M. P., Derdelinckx, G., Dufour, J.-P., Pretorius, I. S., Winderickx, J., Thevelein, J. M., & Delvaux, F. R. (2003). Expression levels of the yeast alcohol acetyltransferase genes ATF1, Lg-ATF1, and ATF2 control the formation of a broad range of volatile esters. Applied and Environmental Microbiology, 69, 5228–5237.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.College of Light Industry and Food SciencesSouth China University of TechnologyGuangzhouChina

Personalised recommendations