Applied Biochemistry and Biotechnology

, Volume 167, Issue 5, pp 1220–1234 | Cite as

Production and Characterization of Violacein by Locally Isolated Chromobacterium violaceum Grown in Agricultural Wastes

  • Wan Azlina Ahmad
  • Nur Zulaikha Yusof
  • Nordiana Nordin
  • Zainul Akmar Zakaria
  • Mohd Fazlin Rezali
Article

Abstract

The present work highlighted the production of violacein by the locally isolated Chromobacterium violaceum (GenBank accession no. HM132057) in various agricultural waste materials (sugarcane bagasse, solid pineapple waste, molasses, brown sugar), as an alternative to the conventional rich medium. The highest yield for pigment production (0.82 g L−1) was obtained using free cells when grown in 3 g of sugarcane bagasse supplemented with 10% (v/v) of l-tryptophan. A much lower yield (0.15 g L−1) was obtained when the cells were grown either in rich medium (nutrient broth) or immobilized onto sugarcane bagasse. Violacein showed similar chemical properties as other natural pigments based on the UV–Vis, Fourier transform infrared spectroscopy, thin-layer chromatography, nuclear magnetic resonance, and mass spectrometry analysis. The pigment is highly soluble in acetone and methanol, insoluble in water or non-polar organic solvents, and showed good stability between pH 5–9, 25–100 °C, in the presence of light metal ions and oxidant such as H2O2. However, violacein would be slowly degraded upon exposure to light. This is the first report on the use of cheap and easily available agricultural wastes as growth medium for violacein-producing C. violaceum.

Keywords

Chromobacterium Violacein Characterization Stability Agriculture wastes material Sugarcane bagasse 

References

  1. 1.
    Cho, Y. J., Park, J. P., Hwang, H. J., Kim, S. W., Choi, J. W., & Yun, J. W. (2002). Production of red pigment by submerged culture of Paecilomyces sinclairii. Letters in Applied Microbiology, 3, 195–202.CrossRefGoogle Scholar
  2. 2.
    Kamel, M. M., El-Shishtawy, R. M., Yussef, B. M., & Mashaly, H. (2005). Ultrasonic assisted dyeing III: Dyeing of wool with lac as a natural dye. Dyes and Pig., 65, 103–110.CrossRefGoogle Scholar
  3. 3.
    Babitha, S. (2009). Microbial pigments. In P. S. Nigam & A. Pandey (Eds.), Biotechnology for agro-industrial residues (pp. 147–162). Berlin: Springer.CrossRefGoogle Scholar
  4. 4.
    Hendry, G. A. F., & Houghton, J. D. (1997). Natural food colorants. Glasgow: Blackie.Google Scholar
  5. 5.
    Dufossé, L. (2006). Microbial production of food grade pigments. Food Tech. Biotech., 44(3), 313–321.Google Scholar
  6. 6.
    Jagannadham, M. V., Rao, V. J., & Shivaji, S. (1991). The major carotenoid pigment of a psychrotrophic Micrococcus roseus strain: Purification, structure, and interaction with synthetic membranes. Journal of Bacteriology, 173(24), 7911–7917.Google Scholar
  7. 7.
    Liu, G. Y., & Nizet, V. (2009). Color me bad: Microbial pigments as virulence factors. Trends Microbe., 17(9), 406–413.CrossRefGoogle Scholar
  8. 8.
    Balows, A., Truper, H. G., Dworkin, M., Harder, W., & Schleifer, K. H. (Eds.) (1992). The prokaryotes, 2nd ed. Berlin: Springer.Google Scholar
  9. 9.
    Sneath, P. H. (1994). Chromobacterium Bergonzini 1881. In: R. E. Gibbons (Ed.), Bergey’s manual of determinative bacteriology, 8th ed. (p. 354). Baltimore: Williams and Wilkins.Google Scholar
  10. 10.
    Mendes, A. S., de Carvalho, J. E., Duarte, M. C. T., Durán, N., & Bruns, R. E. (2001). Factorial design and response surface optimization of crude violacein for Chromobacterium violaceum production. Biotechnology Letters, 23, 1963–1969.CrossRefGoogle Scholar
  11. 11.
    Durán, N., & Menck, C. F. M. (2001). Chromobacterium violaceum: A review of pharmacological and industrial perspectives. Critical Reviews in Microbiology, 27, 201–222.CrossRefGoogle Scholar
  12. 12.
    Pandey, A. (1992). Recent developments in solid-state fermentation. Process Biochemistry, 27, 109–117.CrossRefGoogle Scholar
  13. 13.
    Pandey, A., Soccol, C. R., Nigam, P., Soccol, V. T., Vandenberghe, L. P. S., & Mohan, R. (2000). Review paper: Biotechnological potential of agro-industrial residues. II: Cassava bagasse. Biores Technol., 74, 81–87.CrossRefGoogle Scholar
  14. 14.
    Rettori, D., & DuraÂn, N. (1998). Production, extraction and purification of violacein: An Antibiotic pigment produced by Chromobacterium violaceum. World Journal of Microbiology and Biotechnology, 14, 685–688.CrossRefGoogle Scholar
  15. 15.
    Drew, S. W., & Demain, A. L. (1977). Effect of primary metabolites on secondary metabolism. Annual Review of Microbiology, 31, 343–356.CrossRefGoogle Scholar
  16. 16.
    Sivendra, R., & Lo, H. S. (1975). Identification of Chromobacterium violaceum: Pigmented and nonpigmented strains. Journal of General Microbiology, 90, 21–23.CrossRefGoogle Scholar
  17. 17.
    Nigam, J. N., & Kakati, M. C. (2002). Optimization of dilution rate for the production of value added product and simultaneous reduction of organic load from pineapple cannery waste. World Journal of Microbiology and Biotechnology, 18, 303–308.CrossRefGoogle Scholar
  18. 18.
    Tanaka, K., Hilary, Z. D., & Ishizaki, A. (1999). Investigation of the utility of pineapple juice and pineapple waste material as low-cost substrate for ethanol fermentation by Zymomonas mobilis. Journal of Bioscience and Bioengineering, 87(5), 642–646.CrossRefGoogle Scholar
  19. 19.
    Mussatto, S. I., & Teixeira, J. A. (2010). Lignocellulose as raw material in fermentation processes. In: Mendez-Vilas, A. (Ed.), Current research, technology and education topics in applied microbiology and microbial biotechnology (p. 898). Badajoz: Formatex.Google Scholar
  20. 20.
    Vasconcelos, A. T. R., Almeida, D. F., Hungria, M., Guimarães, C. T., Antônio, R. V., Almeida, F. C., et al. (2003). The complete genome of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proceedings of the National Academy of Sciences of the United States of America, 100, 11660–11665.CrossRefGoogle Scholar
  21. 21.
    Creczynski-Pasa, T. B., & Antônio, R. V. (2004). Energetic metabolism of Chromobacterium violaceum. Genetics and Molecular Research, 3(1), 162–166.Google Scholar
  22. 22.
    DeMoss, R. D., & Evans, N. R. (1959). Physiological aspects of violacein biosynthesis in nonproliferating cells. Journal of Bacteriology, 78, 583–586.Google Scholar
  23. 23.
    Mohan, J. (2007). Organic spectroscopy—principles and applications. UK: Alpha Science International.Google Scholar
  24. 24.
    Yada, S., Wang, Y., Zou, Y., Nagasaki, K., Hosokawa, K., Osaka, I., et al. (2008). Isolation and characterization of two groups of novel marine bacteria producing violacein. Marine Biotech., 10, 128–132.CrossRefGoogle Scholar
  25. 25.
    Lambert, J. B., & Mazzola, E. P. (2004). Nuclear magnetic resonance spectroscopy—an introduction to principles, applications and experimental methods. USA: Pearson Education.Google Scholar
  26. 26.
    Hoshino, T., Kondo, T., Uchiyama, T., & Ogasawara, N. (1987). Biosynthesis of violacein: A novel rearrangement in tryptophan metabolism with 1, 2-shift of the indole ring. Agricultural and Biological Chemistry, 51, 965–968.CrossRefGoogle Scholar
  27. 27.
    Lu, Y., Wang, L., Xue, Y., Zhang, C., Xing, X. H., Lou, K., et al. (2009). Production of violet pigment by a newly isolated psychrotrophic bacterium from a glacier in Xinjiang. China. Biochem. Eng. J., 43, 135–141.CrossRefGoogle Scholar
  28. 28.
    Neshati, A. (2010). Extraction and characterization of purple pigment from Chromobacterium violaceum grown in agricultural waste. Master’s thesis, Universiti Teknologi Malaysia.Google Scholar
  29. 29.
    Wang, Y.-J., Pan, M.-H., Cheng, A.-L., Lin, L.-I., Ho, Y.-S., Hsieh, C.-Y., et al. (1997). Stability of curcumin in buffer solutions and characterization of its degradation products. Journal of Pharmaceutical and Biomedical Analysis, 15, 1867–1876.CrossRefGoogle Scholar
  30. 30.
    Oetari, S., Sudibyo, M., Commandeur, J. N. M., Samhoedi, R., & Vermeulen, N. P. E. (1996). Effects of curcumin on cytochrome P450 and glutathione S-transferase activities in rat liver. Biochemical Pharmacology, 51, 39–45.CrossRefGoogle Scholar
  31. 31.
    Britton, G. (1983). The biochemistry of natural pigments. Cambridge: Cambridge University Press.Google Scholar
  32. 32.
    Zhang, H., Zhan, J., Su, K., & Zhang, Y. (2006). A kind of potential food additive produced by Streptomyces coelicolor: Characteristics of blue pigment and identification of a novel compound, λ-actinorhodin. Food Chemistry, 95, 186–192.CrossRefGoogle Scholar
  33. 33.
    Herbach, K. M., Stinzing, F. C., & Carle, R. (2006). Betalain stability and degradation—structural and chromatic aspects. Journal of Food Science, 71, R41–R50.CrossRefGoogle Scholar
  34. 34.
    Konzen, M., De Marco, D., Cordova, C. A. S., Vieira, T. O., Antônio, R. V., & Creczynski-Pasa, T. B. (2006). Antioxidant properties of violacein: Possible relation on its biological function. Bioorganic & Medicinal Chemistry, 14, 8307–8313.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Wan Azlina Ahmad
    • 1
  • Nur Zulaikha Yusof
    • 1
  • Nordiana Nordin
    • 1
  • Zainul Akmar Zakaria
    • 2
  • Mohd Fazlin Rezali
    • 3
  1. 1.Department of Chemistry, Faculty of ScienceUniversiti Teknologi MalaysiaJohorMalaysia
  2. 2.Institute of Bioproduct DevelopmentUniversiti Teknologi MalaysiaJohorMalaysia
  3. 3.National Metrology LaboratorySIRIM BerhadSepangMalaysia

Personalised recommendations