Applied Biochemistry and Biotechnology

, Volume 169, Issue 4, pp 1405–1417 | Cite as

Analysis of Dormant Bud (Banjhi) Specific Transcriptome of Tea (Camellia sinensis (L.) O. Kuntze) from cDNA Library Revealed Dormancy-Related Genes

  • Krishnaraj Thirugnanasambantham
  • Gajjeraman Prabu
  • Senthilkumar Palanisamy
  • Suresh Ramraj Subhas Chandrabose
  • Abul Kalam Azad Mandal


Bud dormancy is of ecological and economical interest due to its impact on tea (Camellia sinensis (L.) O. Kuntze) plant growth and yield. Growth regulation associated with dormancy is an essential element in plant’s life cycle that leads to changes in expression of large number of genes. In order to identify and provide a picture of the transcriptome profile, cDNA library was constructed from dormant bud (banjhi) of tea. Sequence and gene ontology analysis of 3,500 clones, in many cases, enabled their functional categorization concerning the bud growth. Based on the cDNA library data, the putative role of identified genes from tea is discussed in relation to growth and dormancy, which includes morphogenesis, cellular differentiation, tropism, cell cycle, signaling, and various metabolic pathways. There was a higher representation of unknown processes such as unknown molecular functions (65.80 %), unknown biological processes (62.46 %), and unknown cellular components (67.42 %). However, these unknown transcripts represented a novel component of transcripts in tea plant bud growth and/or dormancy development. The identified transcripts and expressed sequence tags provides a valuable public resource and preliminary insights into the molecular mechanisms of bud dormancy regulation. Further, the findings will be the target of future expression experiments, particularly for further identification of dormancy-related genes in this species.


Banjhi Bud cDNA Dormancy Library Tea Transcriptome 



Authors are thankful to Dr. P. Mohan Kumar, Director, UPASI Tea Research Foundation, and Dr. N. Muraleedharan, Tea Research Association, Toklai for their encouragement and support during the course of study. Financial assistance from NTRF, Tea Board, Kolkata is also gratefully acknowledged.

Supplementary material

12010_2012_70_MOESM1_ESM.xls (186 kb)
Supplementary Table 1A table containing the banjhi bud specific cDNA clone number as well as their accession number, the putative identities of, the top BLAST result, the e-value for the BLAST hit, the GenBank accession numbers and the molecular, functional, cellular component categorization, is available online. (XLS 185 kb)


  1. 1.
    Thirugnanasambantham, K., Prabu, G., Senthilkumar, P., Suresh Ramraj, S., & Mandal, A. K. A. (2011). Plant Physiology and Biochemistry, 49, 565–571.CrossRefGoogle Scholar
  2. 2.
    Paul, A., & Kumar, S. (2011). Functional & Integrative Genomics, 11, 659–664.CrossRefGoogle Scholar
  3. 3.
    Nakayme, A., & Harada, S. (1960). Tea Research Journal, 16, 1–5.CrossRefGoogle Scholar
  4. 4.
    Horvath, D. P., Soto-Suarez, M., Chao, W. S., Jia, Y., & Anderson, J. V. (2005). Weed Science, 53, 795–801.CrossRefGoogle Scholar
  5. 5.
    Rohde, A., Ruttink, T., Hostyn, V., Sterck, L., Driessche, K. V., & Boerjan, W. (2007). Journal of Experimental Botany, 58, 4047–4060.CrossRefGoogle Scholar
  6. 6.
    Horvath, D. P., Chao, W. S., Suttle, J. C., Thimmapuram, J., & Anderson, J. V. (2008). BMC Genomics, 9, 536.CrossRefGoogle Scholar
  7. 7.
    Balasaravanan, T., Pius, P. K., Rajkumar, R., Muraleedharan, N., & Shasany, A. K. (2003). Plant Science, 165, 365–372.CrossRefGoogle Scholar
  8. 8.
    Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. S. F. (1997). Nucleic Acids Research, 25, 3389–3402.CrossRefGoogle Scholar
  9. 9.
    Conesa, A., & Gotz, S. (2008). International Journal of Plant Genome, 2008, 1–13.Google Scholar
  10. 10.
    Satyanarayana, N., Cox, S., & Sharma, V. S. (1992). Journal of Plantation Crops, 20, 151–156.Google Scholar
  11. 11.
    Cox, S., Raj Kumar, R., & Gunasundari, R. (2000). In N. Muraleedharan & R. Rajkumar (Eds.), Recent Advances in Plantation Crops Research (pp. 125–129). New Delhi: Allied Publishers Pvt. Ltd.Google Scholar
  12. 12.
    Dekkers, B. J. W., Schuurmans, J. M. M. J., & Smeekens, S. C. M. (2008). Plant Molecular Biology, 67, 151–167.CrossRefGoogle Scholar
  13. 13.
    Rolland, F., Baena-Gonzalez, E., & Sheen, J. (2006). Annual Review of Plant Biology, 57, 675–709.CrossRefGoogle Scholar
  14. 14.
    Dijkwel, P. P., Huijser, C., Weisbeek, P. J., Chua, N. H., & Smeekens, S. C. M. (1997). The Plant Cell, 9, 583–595.Google Scholar
  15. 15.
    Matthews, R., & Stephens, W. (2006). Experimental Agriculture, 34, 345–367.CrossRefGoogle Scholar
  16. 16.
    Bi, Y. D., Wei, Z. G., Shen, Z., Lu, T. C., Cheng, Y. X., Wang, B. C., & Yang, C. P. (2011). Molecular Biology Report, 38, 721–729.CrossRefGoogle Scholar
  17. 17.
    Genschik, P., Criqui, M. C., Parmentier, Y., Derevier, A., & Fleck, J. (1998). The Plant Cell, 10, 2063–2075.Google Scholar
  18. 18.
    Jennifer, M., Geraint, P., & Mark, E. (2004). The Plant Cell, 16, 3181–3195.CrossRefGoogle Scholar
  19. 19.
    Hershko, A., & Ciechanover, A. (1998). Annual Review of Biochemistry, 67, 425–479.CrossRefGoogle Scholar
  20. 20.
    Pagano, M. (1997). The FASEB Journal, 11, 1067–1075.Google Scholar
  21. 21.
    Xia, C., Bao, Z., Tabassam, F., Ma, W., Qiu, M., Hua, S., & Liu, M. (2000). The Journal of Biological Chemistry, 275, 20942–20948.CrossRefGoogle Scholar
  22. 22.
    Barroco, R. M., Poucke, K. V., Bergervoet, J. H. W., Veylder, L. D., Groot, S. P. C., Inze, D., & Engler, G. (2005). Plant Physiology, 137, 127–140.CrossRefGoogle Scholar
  23. 23.
    Cans, C., Passer, B. J., Shalak, V., Nancy-Portebois, V., Crible, V., Amzallag, V., Allanic, D., Tufino, R., Argentini, M., Moras, D., Fiucci, G., Goud, B., Mirande, M., Amson, R., & Telerman, A. (2003). Proceedings of the National Academy of Sciences USA, 100, 13892–13897.CrossRefGoogle Scholar
  24. 24.
    Gachet, Y., Tournier, S., Lee, M., Laris-Karatzas, A., Poulton, T., & Bommer, U. A. (1999). Journal of Cell Science, 112, 1257–1271.Google Scholar
  25. 25.
    Maas, N. L., Miller, K. M., DeFazio, L. G., & Toczyski, D. P. (2006). Molecular Cell, 23, 109–119.CrossRefGoogle Scholar
  26. 26.
    Singh, K., Kumar, S., & Ahuja, P. S. (2009). Molecular Biology Reports, 36, 537–542.CrossRefGoogle Scholar
  27. 27.
    Ma, Q. (2007). Journal of Plant Growth Regulation, 26, 369–388.CrossRefGoogle Scholar
  28. 28.
    Engel, M., Seifert, M., Theisinger, B., & Seyfert, U. (1998). The Journal of Biological Chemistry, 273, 20058–20065.CrossRefGoogle Scholar
  29. 29.
    Johansson, M., Hammargren, J., Uppsall, E., Mackenzie, A., & Knorpp, C. (2008). Plant Science, 174, 192–199.CrossRefGoogle Scholar
  30. 30.
    Dai, Y., Wang, H. Z., Li, B. H., Huang, J., Liu, X. F., Zhou, Y. H., Mou, Z. L., & Li, J. Y. (2006). The Plant Cell, 18, 308–320.CrossRefGoogle Scholar
  31. 31.
    Chaboute, M. E., Clement, B., Sekine, M., Philipps, G., & Gigot, N. C. (2000). The Plant Cell, 12, 1987–1999.Google Scholar
  32. 32.
    Lazar, G., & Goodman, H. M. (2006). Proceedings of the National Academy of Sciences U S A, 103, 472–476.CrossRefGoogle Scholar
  33. 33.
    Thomas, T., & Thomas, T. J. (2001). Cellular and Molecular Life Sciences, 58, 244–258.CrossRefGoogle Scholar
  34. 34.
    Shi, J., Gonzales, R. A., & Bhattacharyya, M. K. (1996). The Journal of Biological Chemistry, 271, 9384–9389.CrossRefGoogle Scholar
  35. 35.
    Pastori, G. M., & Foyer, C. H. (2002). American Society of Plant Biologists, 129, 460–468.Google Scholar
  36. 36.
    Hedley, P. E., Russell, J. R., Jorgensen, L., Gordon, S., Morris, J. A., Hackett, C. A., Cardle, L., & Brennan, R. (2010). BMC Plant Biology, 10, 202.CrossRefGoogle Scholar
  37. 37.
    Baier, M., & Dietz, K. J. (1997). The Plant Journal, 12, 179–190.CrossRefGoogle Scholar
  38. 38.
    Meyer, Y., Reichheld, J. P., & Vignols, F. (2005). Photosynthesis Research, 86, 419–433.CrossRefGoogle Scholar
  39. 39.
    Carles, C., Bies-Etheve, N., Aspart, L., Leon-Kloosterziel, K. M., Koornneef, M., Echeverria, M., & Delseny, M. (2002). The Plant Journal, 30, 373–383.CrossRefGoogle Scholar
  40. 40.
    Schrader, J., Moyle, R., Bhalerao, R., Hertzberg, M., Lundeberg, J., Nilsson, P., & Bhalerao, R. P. (2004). The Plant Journal, 40, 173–187.CrossRefGoogle Scholar
  41. 41.
    Jimenez, S., Reighard, G. L., & Bielenberg, D. G. (2010). Plant Molecular Biology, 73, 157–167.CrossRefGoogle Scholar
  42. 42.
    Ruttink, T., Arend, M., Morreel, K., Storme, V., Rombauts, S., Fromm, J., Bhalero, R. P., Boerjan, W., & Rohde, A. (2007). The Plant Cell, 19, 2370–2390.CrossRefGoogle Scholar
  43. 43.
    Hoson, T., & Masuda, Y. (1995). Plant & Cell Physiology, 36, 517–523.Google Scholar
  44. 44.
    Park, S., Keathley, D. E., & Han, K. H. (2008). Tree Physiology, 28, 321–329.CrossRefGoogle Scholar
  45. 45.
    Mathiason, K., He, D., Grimplet, J., Venkateswari, J., Galbraith, D., Or, E., & Fennell, A. (2009). Functional & Integrative Genomics, 9, 81–96.CrossRefGoogle Scholar
  46. 46.
    Mira, H., Martinez-Garcia, F., & Penarrubia, L. (2001). The Plant Journal, 25, 521–528.CrossRefGoogle Scholar
  47. 47.
    Zheng-Jun, X., Masatoshi, N., Yoshihito, S., & Isomaro, Y. (2002). Plant Physiology, 129, 1285–1295.CrossRefGoogle Scholar
  48. 48.
    Meza-Zepeda, L. A., Baudo, M. M., Palva, E. T., & Heino, P. (1998). Journal of Experimental Botany, 49, 1451–1452.Google Scholar
  49. 49.
    Anderson, J. V., Chao, W. S., & Horvath, D. P. (2001). Weed Science, 49, 581–589.CrossRefGoogle Scholar
  50. 50.
    Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., & Shinozaki, K. Y. (2000). Proceedings of the National Academy of Sciences U S A, 97, 1632–11637.CrossRefGoogle Scholar
  51. 51.
    Tsukagoshi, H., Saijo, T., Shibata, D., Morikami, A., & Nakamura, K. (2005). Plant Physiology, 138, 675–685.CrossRefGoogle Scholar
  52. 52.
    Kasai, T., Inoue, M., Koshiba, S., Yabuki, T., Aoki, M., Nunokawa, E., Seki, E., Matsuda, T., Matsuda, N., Tomo, Y., Shirouzu, M., Terada, T., Obayashi, N., Hamana, H., Shinya, N., Tatsuguchi, A., Yasuds, S., Yoshida, M., Hirota, H., Matsuo, Y., Tani, K., Suzuki, H., Arakawa, T., Carninci, P., Kawai, J., Hayashizaki, Y., Kigawa, T., & Yokoyama, S. (2004). Protein Science, 13, 545–548.CrossRefGoogle Scholar
  53. 53.
    Stafstrom, J. P., Ripley, B. D., Devitt, M. L., & Drake, B. (1998). Planta, 205, 547–552.CrossRefGoogle Scholar
  54. 54.
    Horvath, D. P., Anderson, J. V., Chao, W. S., & Foley, M. E. (2003). Trends in Plant Science, 8, 534–540.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Krishnaraj Thirugnanasambantham
    • 1
  • Gajjeraman Prabu
    • 1
    • 2
  • Senthilkumar Palanisamy
    • 1
  • Suresh Ramraj Subhas Chandrabose
    • 1
  • Abul Kalam Azad Mandal
    • 1
    • 3
  1. 1.UPASI-Tea Research FoundationValparaiIndia
  2. 2.Department of BiotechnologyKarpagam UniversityCoimbatoreIndia
  3. 3.School of Bio Sciences and Technology (SBST), Plant Biotechnology DivisionVIT UniversityVelloreIndia

Personalised recommendations