Advertisement

Applied Biochemistry and Biotechnology

, Volume 169, Issue 3, pp 960–975 | Cite as

Purification, Characterization, and Heterologous Expression of a Thermostable β-1,3-1,4-Glucanase from Bacillus altitudinis YC-9

  • Shurui Mao
  • Zhaoxin Lu
  • Chong Zhang
  • Fengxia Lu
  • Xiaomei BieEmail author
Article

Abstract

Purification, characterization, gene cloning, and heterologous expression in Escherichia coli of a thermostable β-1,3-1,4-glucanase from Bacillus altitudinis YC-9 have been investigated in this paper. The donor strain B. altitudinis YC-9 was isolated from spring silt. The native enzyme was purified by ammonium sulfate precipitation, diethylaminoethyl-cellulose anion exchange chromatography, and Sephadex G-100 gel filtration. The purified β-1,3-1,4-glucanase was observed to be stable at 60 °C and retain more than 90 % activity when incubated for 2 h at 60 °C and remain about 75 % and 44 % activity after incubating at 70 °C and 80 °C for 10 min, respectively. Acidity and temperature optimal for this enzyme was pH 6 and 65 °C. The open reading frame of the enzyme gene was measured to be 732 bp encoding 243 amino acids, with a predicted molecular weight of 27.47 kDa. The gene sequence of β-1,3-1,4-glucanase showed a homology of 98 % with that of Bacillus licheniformis. After being expressed in E. coli BL21, active recombinant enzyme was detected both in the supernatants of the culture and the cell lysate, with the activity of 102.7 and 216.7 U/mL, respectively. The supernatants of the culture were used to purify the recombinant enzyme. The purified recombinant enzyme was characterized to show almost the same properties to the wild enzyme, except that the specific activity of the recombinant enzyme reached 5392.7 U/mg, which was higher than those ever reported β-1,3-1,4-glucanase from Bacillus strains. The thermal stability and high activity make this enzyme broad prospect for industry application. This is the first report on β-1,3-1,4-glucanase produced by B. altitudinis.

Keywords

β-1,3-1,4-Glucanase Characterization Heterologous expression Bacillus altitudinis YC-9 

Supplementary material

12010_2012_64_MOESM1_ESM.doc (260 kb)
ESM 1 (DOC 260 kb)

References

  1. 1.
    Planas, A. (2000). Bacterial 1,3-1,4-beta-glucanases: Structure, function and protein engineering. Biochimica et Biophysica Acta, 1543, 361–382.CrossRefGoogle Scholar
  2. 2.
    Olsen, O., Borriss, R., Simon, O., & Thomsen, K. K. (1991). Hybrid Bacillus (1–3,1-4)-beta-glucanases: Engineering thermostable enzymes by construction of hybrid genes. Molecular and General Genetics MGG, 225, 177–185.CrossRefGoogle Scholar
  3. 3.
    Qiao, J., Dong, B., Li, Y., Zhang, B., & Cao, Y. (2009). Cloning of a beta-1,3-1,4-glucanase gene from Bacillus subtilis MA139 and its functional expression in Escherichia coli. Applied Biochemistry and Biotechnology, 152, 334–342.CrossRefGoogle Scholar
  4. 4.
    Lloberas, J., Perez-Pons, J. A., & Querol, E. (1991). Molecular cloning, expression and nucleotide sequence of the endo-beta-1,3-1,4-d-glucanase gene from Bacillus licheniformis. Predictive structural analyses of the encoded polypeptide. European journal of biochemistry / FEBS, 197, 337–343.CrossRefGoogle Scholar
  5. 5.
    Teng, D., Wang, J. H., Fan, Y., Yang, Y. L., Tian, Z. G., Luo, J., Yang, G. P., & Zhang, F. (2006). Cloning of beta-1,3-1,4-glucanase gene from Bacillus licheniformis EGW039 (CGMCC 0635) and its expression in Escherichia coli BL21 (DE3). Applied Microbiology and Biotechnology, 72, 705–712.CrossRefGoogle Scholar
  6. 6.
    Borriss, R., Buettner, K., & Maentsaelae, P. (1990). Structure of the beta-1,3-1,4-glucanase gene of Bacillus macerans: Homologies to other beta-glucanases. Molecular and General Genetics MGG, 222, 278–283.CrossRefGoogle Scholar
  7. 7.
    Akita, M., Kayatama, K., Hatada, Y., Ito, S., & Horikoshi, K. (2005). A novel beta-glucanase gene from Bacillus halodurans C-125. FEMS Microbiology Letters, 248, 9–15.CrossRefGoogle Scholar
  8. 8.
    Kim, J. Y. (2003). Overproduction and secretion of Bacillus circulans endo-beta-1,3-1,4-glucanase gene (bglBC1) in B. subtilis and B. megaterium. Biotechnology Letters, 25, 1445–1449.CrossRefGoogle Scholar
  9. 9.
    Gosalbes, M. J., Perez-Gonzalez, J. A., Gonzalez, R., & Navarro, A. (1991). Two beta-glycanase genes are clustered in Bacillus polymyxa: Molecular cloning, expression, and sequence analysis of genes encoding a xylanase and an endo-beta-(1,3)-(1,4)-glucanase. Journal of Bacteriology, 173, 7705–7710.Google Scholar
  10. 10.
    Yang, P., Shi, P., Wang, Y., Bai, Y., Meng, K., Luo, H., Yuan, T., & Yao, B. (2007). Cloning and overexpression of a Paenibacillus beta-glucanase in Pichia pastoris: Purification and characterization of the recombinant enzyme. Journal of Microbiology and Biotechnology, 17, 58–66.Google Scholar
  11. 11.
    Teather, R. M., & Erfle, J. D. (1990). DNA sequence of a Fibrobacter succinogenes mixed-linkage beta-glucanase (1,3-1,4-beta-d-glucan 4-glucanohyd-rolase) gene. Journal of Bacteriology, 172, 3837–3841.Google Scholar
  12. 12.
    Schimming, S., Schwarz, W. H., & Staudenbauer, W. L. (1991). Properties of a thermoactive beta-1,3-1,4-glucanase (lichenase) from Clostridium thermocellum expressed in Escherichia coli. Biochemical and Biophysical Research Communications, 177, 447–452.CrossRefGoogle Scholar
  13. 13.
    Ekinci, M. S., McCrae, S. I., & Flint, H. J. (1997). Isolation and overexpression of a gene encoding an extracellular beta-(1,3-1,4)-glucanase from Streptococcus bovis JB1. Applied and Environmental Microbiology, 63, 3752–3756.Google Scholar
  14. 14.
    Murray, P. G., Grassick, A., Laffey, C. D., Cuffe, M. M., Higgins, T., Savage, A. V., Planas, A., & Tuohy, M. G. (2001). Isolation and characterization of a thermostable endo-beta-glucanase active on 1,3-1,4-beta-d-glucans from the aerobic fungus Talaromyces emersonii CBS 814.70. Enzyme and Microbial Technology, 29, 90–98.CrossRefGoogle Scholar
  15. 15.
    Wang, J. L., Ruan, H., Zhang, H. F., Zhang, Q., Zhang, H. B., He, G. Q., & Shen, S. R. (2007). Characterization of a thermostable and acidic-tolerable beta-glucanase from aerobic fungi Trichoderma koningii ZJU-T. Journal of Food Science, 72, C452–456.CrossRefGoogle Scholar
  16. 16.
    Hua, C., Yan, Q., Jiang, Z., Li, Y., & Katrolia, P. (2010). High-level expression of a specific beta-1,3-1,4-glucanase from the thermophilic fungus Paecilomyces thermophila in Pichia pastoris. Applied Microbiology and Biotechnology, 88, 509–518.CrossRefGoogle Scholar
  17. 17.
    Hong, M. R., Kim, Y. S., Joo, A. R., Lee, J. K., Kim, Y. S., & Oh, D. K. (2009). Purification and characterization of a thermostable beta-1,3-1,4-glucanase from Laetiporus sulphureus var. miniatus. Journal of Microbiology and Biotechnology, 19, 818–822.CrossRefGoogle Scholar
  18. 18.
    Tang, Y., Yang, S., Yan, Q., Zhou, P., Cui, J., & Jiang, Z. (2012). Purification and characterization of a novel beta-1,3-1,4-glucanase (lichenase) from thermophilic Rhizomucor miehei with high specific activity and its gene sequence. Journal of Agricultural and Food Chemistry, 60, 2354–2361.CrossRefGoogle Scholar
  19. 19.
    Michel, G., Chantalat, L., Duee, E., Barbeyron, T., Henrissat, B., Kloareg, B., & Dideberg, O. (2001). The kappa-carrageenase of P. carrageenovora features a tunnel-shaped active site: A novel insight in the evolution of Clan-B glycoside hydrolases. Structure, 9, 513–525.CrossRefGoogle Scholar
  20. 20.
    Wen, T. N., Chen, J. L., Lee, S. H., Yang, N. S., & Shyur, L. F. (2005). A truncated Fibrobacter succinogenes 1,3-1,4-beta-d-glucanase with improved enzymatic activity and thermotolerance. Biochemistry, 44, 9197–9205.CrossRefGoogle Scholar
  21. 21.
    van Rensburg, P., van Zyl, W. H., & Pretorius, I. S. (1997). Over-expression of the Saccharomyces cerevisiae exo-beta-1,3-glucanase gene together with the Bacillus subtilis endo-beta-1,3-1,4-glucanase gene and the Butyrivibrio fibrisolvens endo-beta-1,4-glucanase gene in yeast. Journal of Biotechnology, 55, 43–53.CrossRefGoogle Scholar
  22. 22.
    Teng, D., Fan, Y., Yang, Y. L., Tian, Z. G., Luo, J., & Wang, J. H. (2007). Codon optimization of Bacillus licheniformis beta-1,3-1,4-glucanase gene and its expression in Pichia pastoris. Applied Microbiology and Biotechnology, 74, 1074–1083.CrossRefGoogle Scholar
  23. 23.
    Teng, D., Wang, J. H., Yao, Y., Yang, Y. L., & Liu, L. H. (2005). Cloning and expression of Bacillus licheniformis EG039 beta-1,3-1,4-glucanase in Pichia methanolica. In W. Jianhua (Ed.), Research and development of the new safe feed additives (pp. 102–109). Beijing: China Science.Google Scholar
  24. 24.
    Liu, J. R., Yu, B., Zhao, X., & Cheng, K. J. (2007). Coexpression of rumen microbial beta-glucanase and xylanase genes in Lactobacillus reuteri. Applied Microbiology and Biotechnology, 77, 117–124.CrossRefGoogle Scholar
  25. 25.
    Cheng, H. L., Tsai, L. C., Lin, S. S., Yuan, H. S., Yang, N. S., Lee, S. H., & Shyur, L. F. (2002). Mutagenesis of Trp(54) and Trp(203) residues on Fibrobacter succinogenes 1,3-1,4-beta-D-glucanase significantly affects catalytic activities of the enzyme. Biochemistry, 41, 8759–8766.CrossRefGoogle Scholar
  26. 26.
    Sun, J., Wang, H., Lv, W., Ma, C., Lou, Z., & Dai, Y. (2011). Construction and characterization of a fusion beta-1,3-1,4-glucanase to improve hydrolytic activity and thermostability. Biotechnology Letters, 33, 2193–2199.CrossRefGoogle Scholar
  27. 27.
    Huang, J. W., Cheng, Y. S., Ko, T. P., Lin, C. Y., Lai, H. L., Chen, C. C., Ma, Y., Zheng, Y., Huang, C. H., Zou, P., Liu, J. R., & Guo, R. T. (2012). Rational design to improve thermostability and specific activity of the truncated Fibrobacter succinogenes 1,3-1,4-beta-d-glucanase. Applied Microbiology and Biotechnology, 94, 111–121.CrossRefGoogle Scholar
  28. 28.
    Zhang, Q., Chen, Q. H., Fu, M. L., Wang, J. L., Zhang, H. B., & He, G. Q. (2008). Construction of recombinant industrial Saccharomyces cerevisiae strain with bglS gene insertion into PEP4 locus by homologous recombination. Journal of Zhejiang University. Science B, 9, 527–535.CrossRefGoogle Scholar
  29. 29.
    Zhang, X.-y., Ruan, H., Mu, L., He, G.-q., Tang, X.-j., & Chen, Q.-h. (2006). Enhancement of the thermostability of β-1,3-1,4-glucanase by directed evolution. Journal of Zhejiang University SCIENCE A, 7(11), 1948–1955.CrossRefGoogle Scholar
  30. 30.
    Sneath, P.H.A. (1986). Endospore-forming Gram-positive rods and cocci. In: P.H.A. Sneath (Ed.), Bergey’s manual of systematic bacteriology, vol 2. Williams and Wilkins, Baltimore, MD. pp 1104–1138 ISBN 0–683–07893–3.Google Scholar
  31. 31.
    Weisburg, W. G., Barns, S. M., Pelletier, D. A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173, 697–703.Google Scholar
  32. 32.
    Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.CrossRefGoogle Scholar
  33. 33.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  34. 34.
    Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.CrossRefGoogle Scholar
  35. 35.
    Maheshwari, R., Bharadwaj, G., & Bhat, M. K. (2000). Thermophilic fungi: Their physiology and enzymes. Microbiology and Molecular Biology Reviews, 64, 461–488.CrossRefGoogle Scholar
  36. 36.
    Dubendorff, J. W., & Studier, F. W. (1991). Controlling basal expression in an inducible T7 expression system by blocking the target T7 promoter with Lac repressor. Journal of Molecular Biology, 219, 45–59.CrossRefGoogle Scholar
  37. 37.
    Celestino, K. R., Cunha, R. B., & Felix, C. R. (2006). Characterization of a beta-glucanase produced by Rhizopus microsporus var. microsporus, and its potential for application in the brewing industry. BMC Biochemistry, 7, 23.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shurui Mao
    • 1
  • Zhaoxin Lu
    • 1
  • Chong Zhang
    • 1
  • Fengxia Lu
    • 1
  • Xiaomei Bie
    • 1
    Email author
  1. 1.College of Food Science and Technology, Nanjing Agricultural UniversityKey Laboratory of Food Processing and Quality Control, Ministry of Agriculture of ChinaNanjingPeople’s Republic of China

Personalised recommendations