Applied Biochemistry and Biotechnology

, Volume 169, Issue 4, pp 1069–1087 | Cite as

Two-Stage Acidic–Alkaline Hydrothermal Pretreatment of Lignocellulose for the High Recovery of Cellulose and Hemicellulose Sugars

  • Bin Guo
  • Yuanhui Zhang
  • Guo Yu
  • Won-Heong Lee
  • Yong-Su Jin
  • Eberhard Morgenroth
Article

Abstract

The focus of this work was to develop a combined acid and alkaline hydrothermal pretreatment of lignocellulose that ensures high recovery of both hexose and pentose. Dilute sulfuric acid and lime pretreatments were employed sequentially. Process performance was optimized in terms of catalyst concentration, retention time, and temperature using response surface methodology. Medium operational conditions in the acid stage and harsh conditions in the alkaline stage were desirable with optimal performance at 0.73 wt% H2SO4, 150 °C, 6.1 min in the first stage, and 0.024 g lime/g biomass, 202 °C, 30 min in the second stage. In comparison to single-stage pretreatments with high recovery of either glucose or xylose, two-stage process showed great promises with >80 % glucose and >70 % xylose recovery. In addition, the method greatly improved ethanol fermentation with yields up to 0.145 g/g Miscanthus, due to significantly reduced formation of inhibitory by-products such as weak acids, furans, and phenols. Supplementing biomimetic acids would further increase glucose yield by up to 15 % and xylose yield by 25 %.

Keywords

Two-stage acidic–alkaline pretreatment Miscanthus Combined acid hydrolysis Response surface methodology Lignocellulose 

Supplementary material

12010_2012_38_MOESM1_ESM.docx (103 kb)
ESM 1(DOCX 103 kb)

References

  1. 1.
    Cardona, C. A., & Sánchez, Ó. J. (2007). Bioresource Technology, 98, 2415–2457.CrossRefGoogle Scholar
  2. 2.
    Biomass multi-year program plan, (April 2011). U.S. Department of Energy, Energy Efficiency and Renewable Energy (EERE).Google Scholar
  3. 3.
    Chandra, R., Bura, R., Mabee, W., Berlin, A., Pan, X., & Saddler, J. (2007). Advances in Biochemical Engineering/Biotechnology, 108, 67–93.CrossRefGoogle Scholar
  4. 4.
    Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Industrial and Engineering Chemistry Research, 48, 3713–3729.CrossRefGoogle Scholar
  5. 5.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., & Ladisch, M. (2005). Bioresource Technology, 96, 673–686.CrossRefGoogle Scholar
  6. 6.
    Nguyen, Q. A., Tucker, M. P., Keller, F. A., & Eddy, F. P. (2000). Applied Biochemistry and Biotechnology, 84, 561–576.CrossRefGoogle Scholar
  7. 7.
    Kim, K. H. (2005). Journal of the Science of Food and Agriculture, 85, 2461–2467.CrossRefGoogle Scholar
  8. 8.
    Galbe, M., & Zacchi, G. (2007). Advances in Biochemical Engineering/Biotechnology, 108, 41–65.CrossRefGoogle Scholar
  9. 9.
    Taherzadeh, M. J., & Karimi, K. (2008). International Journal of Molecular Sciences, 9, 1621–1651.CrossRefGoogle Scholar
  10. 10.
    Pan, X., Xie, D., Gilkes, N., Gregg, D. J., & Saddler, J. N. (2005). Applied Biochemistry and Biotechnology, 124, 1069–1079.CrossRefGoogle Scholar
  11. 11.
    Sun, X., Xu, F., Sun, R., Fowler, P., & Baird, M. (2005). Carbohydrate Research, 340, 97–106.CrossRefGoogle Scholar
  12. 12.
    Kim, T. H., & Lee, Y. (2006). Bioresource Technology, 97, 224–232.CrossRefGoogle Scholar
  13. 13.
    Brosse, N., Sannigrahi, P., & Ragauskas, A. (2009). Industrial and Engineering Chemistry Research, 48, 8328–8334.CrossRefGoogle Scholar
  14. 14.
    Shatalov, A. A., & Pereira, H. (2012). Carbohydrate Polymers, 87, 210–217.CrossRefGoogle Scholar
  15. 15.
    Saha, B. C., & Cotta, M. A. (2008). Biomass and Bioenergy, 32, 971–977.CrossRefGoogle Scholar
  16. 16.
    Rabelo, S. C., Filho, R. M., & Costa, A. C. (2009). Applied Biochemistry and Biotechnology, 153, 139–150.CrossRefGoogle Scholar
  17. 17.
    Carlson, R. & Carlson, J. E. (2005). Design and optimization in organic synthesis. Elsevier Science, Amsterdam.Google Scholar
  18. 18.
    Pinzauti, S., Gratteri, P., Furlanetto, S., Mura, P., Dreassi, E., & Phan-Tan-Luu, R. (1996). Journal of Pharmaceutical and Biomedical Analysis, 14, 881–889.CrossRefGoogle Scholar
  19. 19.
    Ha, S. J., Galazka, J. M., Kim, S. R., Choi, J. H., Yang, X., Seo, J. H., Glass, N. L., Cate, J. H. D., & Jin, Y. S. (2011). Proceedings of the National Academy of Sciences USA, 108, 504–509.CrossRefGoogle Scholar
  20. 20.
    Guo, B., Zhang, Y., Ha, S. J., Jin, Y. S., & Morgenroth, E. (2012). Bioresource Technology, 110, 278–287.CrossRefGoogle Scholar
  21. 21.
    Scalbert, A., Monties, B., & Janin, G. (1989). Journal of Agricultural and Food Chemistry, 37, 1324–1329.CrossRefGoogle Scholar
  22. 22.
    Kim, S. B., Lee, J. H., Oh, K. K., Lee, S. J., Lee, J. Y., Kim, J. S., & Kim, S. W. (2011). Biotechnology and Bioprocess Engineering, 16, 725–732.CrossRefGoogle Scholar
  23. 23.
    Lloyd, T. A., & Wyman, C. E. (2005). Bioresource Technology, 96, 1967–1977.CrossRefGoogle Scholar
  24. 24.
    Kim, S. B., Lee, S. J., Jang, E. J., Han, S. O., Park, C., & Kim, S. W. (2012). Journal of Industrial and Engineering Chemistry, 18, 183–187.CrossRefGoogle Scholar
  25. 25.
    Guo, G. L., Chen, W. H., Chen, W. H., Men, L. C., & Hwang, W. S. (2008). Bioresource Technology, 99, 6046–6053.CrossRefGoogle Scholar
  26. 26.
    Klinke, H. B., Thomsen, A., & Ahring, B. K. (2004). Applied Microbiology and Biotechnology, 66, 10–26.CrossRefGoogle Scholar
  27. 27.
    Klinke, H. B., Ahring, B. K., Schmidt, A. S., & Thomsen, A. B. (2002). Bioresource Technology, 82, 15–26.CrossRefGoogle Scholar
  28. 28.
    Akpinar, O., Levent, O., Sabanci, S., Uysal, R. S., & Sapci, B. (2011). Bioresources, 6, 4103–4116.Google Scholar
  29. 29.
    Cai, B. Y., Ge, J. P., Ling, H. Z., Cheng, K. K., & Ping, W. X. (2011). Biomass and Bioenergy, 36, 250–257.CrossRefGoogle Scholar
  30. 30.
    Jeong, T. S., Um, B. H., Kim, J. S., & Oh, K. K. (2010). Applied Biochemistry and Biotechnology, 161, 22–33.CrossRefGoogle Scholar
  31. 31.
    Wang, G., Lee, J. W., Zhu, J., & Jeffries, T. W. (2011). Applied Biochemistry and Biotechnology, 163, 658–668.CrossRefGoogle Scholar
  32. 32.
    Wang, Z., & Cheng, J. J. (2011). Energy & Fuels, 25, 1830–1836.CrossRefGoogle Scholar
  33. 33.
    Fuentes, L. L. G., Rabelo, S. C., Filho, R. M., & Costa, A. C. (2011). Applied Biochemistry and Biotechnology, 163, 612–625.CrossRefGoogle Scholar
  34. 34.
    Chang, V. S., Nagwani, M., & Holtzapple, M. T. (1998). Applied Biochemistry and Biotechnology, 74, 135–159.CrossRefGoogle Scholar
  35. 35.
    Torre, M., Rodriguez, A. R., & Saura-Calixto, F. (1992). Journal of Agricultural and Food Chemistry, 40, 1762–1766.CrossRefGoogle Scholar
  36. 36.
    Percival Zhang, Y. H., Berson, E., Sarkanen, S., & Dale, B. E. (2009). Applied Biochemistry and Biotechnology, 153, 80–83.CrossRefGoogle Scholar
  37. 37.
    Xu, J., Cheng, J. J., Sharma-Shivappa, R. R., & Burns, J. C. (2010). Bioresource Technology, 101, 2900–2903.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Bin Guo
    • 1
  • Yuanhui Zhang
    • 2
  • Guo Yu
    • 2
  • Won-Heong Lee
    • 3
  • Yong-Su Jin
    • 3
  • Eberhard Morgenroth
    • 1
    • 4
    • 5
  1. 1.Dept. of Civil and Environmental EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Dept. of Agricultural and Biological EngineeringUniversity of Illinois at Urbana-Champaign, Agricultural and Engineering Science BuildingUrbanaUSA
  3. 3.Dept. of Food Science and Human Nutrition, Institute for Genomic BiologyUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.ETH Zurich, Institute of Environmental EngineeringZurichSwitzerland
  5. 5.Eawag Swiss Federal Institute of Aquatic Science and TechnologyDuebendorfSwitzerland

Personalised recommendations