Applied Biochemistry and Biotechnology

, Volume 166, Issue 6, pp 1423–1432 | Cite as

Effect of Physicochemical Characteristics of Cellulosic Substrates on Enzymatic Hydrolysis by Means of a Multi-Stage Process for Cellobiose Production

  • Caroline Vanderghem
  • Nicolas Jacquet
  • Sabine Danthine
  • Christophe Blecker
  • Michel Paquot
Article

Abstract

The effect of two types of cellulose, microcrystalline cellulose and paper pulp, on enzymatic hydrolysis for cellobiose production was investigated. The particle size, the relative crystallinity index and the water retention value were determined for both celluloses. A previously studied multistage hydrolysis process that proved to enhance the cellobiose production was studied with both types of celluloses. The cellobiose yield exhibited a significant improvement (120% for the microcrystalline cellulose and 75% for the paper pulp) with the multistage hydrolysis process compared to continuous hydrolysis. The conversion of cellulose to cellobiose was greater for the microcrystalline cellulose than for the paper pulp. Even with high crystallinity, microcrystalline cellulose achieved the highest cellobiose yield probably due to its highest specific surface area accessible to enzymes and quantity of adsorbed protein.

Keywords

Cellobiose Multistage process Cellulase binding Water retention value Microcrystalline cellulose Paper pulp 

Notes

Acknowledgments

This study was financially supported by the Walloon Region (TECHNOSE project no. 716757). We thank Ms. Virginie Byttebier for her excellent assistance.

References

  1. 1.
    Smits, G., Coussement, P., & De Leenheer, L. (1993). European Patent EP 0 354 199 B1.Google Scholar
  2. 2.
    Yamasaki, N., Ibuki, I. and Isaka, K. (2007) Patent Application Publication. US 2007/0207108 A1.Google Scholar
  3. 3.
    Franklin, K. R., Hopkinson, A., Webb, N. and White, M. S. (2002) Patent WO/2002/032914.Google Scholar
  4. 4.
    Han, S., Baigude, H., Hattori, K., Yoshida, T., & Uryu, T. (2007). Carbohydrate Polymers, 68(1), 26–34.CrossRefGoogle Scholar
  5. 5.
    Singer, N. S., Dubois, G. E., & Muller, G. W. (1990). European Patent EP 0 355 138.Google Scholar
  6. 6.
    Wood, T. M., & McCrae, S. I. (1979). Adv Chem, 181, 181–209.CrossRefGoogle Scholar
  7. 7.
    Walker, L. P., & Wilson, D. B. (1991). Bioresource Technology, 36(1), 3–14.CrossRefGoogle Scholar
  8. 8.
    Mansfield, S. D., Mooney, C., & Saddler, J. N. (1999). Biotechnol Progr, 15, 804–816.CrossRefGoogle Scholar
  9. 9.
    Zhang, Y. H. P., & Lynd, L. R. (2004). Biotechnology and Bioengineering, 88, 797–824.CrossRefGoogle Scholar
  10. 10.
    Yeh, A. I., Huang, Y. C., & Chen, S. H. (2010). Carbohydrate Polymers, 79(1), 192–199.CrossRefGoogle Scholar
  11. 11.
    Vanderghem, C., Boquel, P., Blecker, C., & Paquot, M. (2010). Applied Biochemistry and Biotechnology, 160(8), 2300–2307.CrossRefGoogle Scholar
  12. 12.
    Van Soest, P. J., & Wine, R. H. (1967). Journal of the Association of Official Analytical Chemists, 50, 50–55.Google Scholar
  13. 13.
    Ghose, T. K. (1987). Pure and Applied Chemistry, 59(2), 257–268.CrossRefGoogle Scholar
  14. 14.
    Adey, B. and Baker, J.(1996) NREL Laboratory analytical procedure. Measurement of cellulases activities. Available from http://www.nrel.gov/biomass/pdfs/42628.pdf. Accessed January 15, 2011.
  15. 15.
    Siroka, B., Noisterning, M., Griesser, U. J., & Bechtold, T. (2008). Carbohydrate Research, 343, 2194–2199.CrossRefGoogle Scholar
  16. 16.
    Ryu, D. D. Y., Lee, S. B., Tassinari, T., & Macy, C. (1982). Biotechnology and Bioengineering, 24, 1047–1067.CrossRefGoogle Scholar
  17. 17.
    Sinitsyn, A. P., Gusakov, A. V., & Vlasenko, E. Yu. (1991). Applied Biochemistry and Biotechnology, 30, 43–59.CrossRefGoogle Scholar
  18. 18.
    Focher, B., Marzetti, A., Sarto, V., Beltrame, P. L., & Carniti, P. (1984). Journal of Applied Polymer Science, 29(11), 3329–3338.CrossRefGoogle Scholar
  19. 19.
    Paquot, M., Thonart, P., Jacquemin, P., & Rassel, A. (1981). Holzforschung, 35, 87–93.CrossRefGoogle Scholar
  20. 20.
    Ogiwara, Y. (1968). Textile Research Journal, 38(9), 885–891.CrossRefGoogle Scholar
  21. 21.
    Lee, S. B., Shin, H. S., Ryu, D. D. Y., & Mandels, M. (1982). Biotechnology and Bioengineering, 24, 2137–2153.CrossRefGoogle Scholar
  22. 22.
    Stone, J. E., Scallan, A. M., Donefer, E., & Ahlgren, E. (1969). Advances in Chemistry Series, 95, 219–241.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Caroline Vanderghem
    • 1
  • Nicolas Jacquet
    • 1
  • Sabine Danthine
    • 1
  • Christophe Blecker
    • 1
  • Michel Paquot
    • 1
  1. 1.Department of Industrial Biological ChemistryGembloux Agro-Bio Tech, University of LiègeGemblouxBelgium

Personalised recommendations