Advertisement

Applied Biochemistry and Biotechnology

, Volume 166, Issue 6, pp 1381–1387 | Cite as

Enhanced Ammonia Content in Compost Leachate Processed by Black Soldier Fly Larvae

  • Terrence R. Green
  • Radu Popa
Article

Abstract

Black soldier fly (BSF) larvae (Hermetia illucens), feeding on leachate from decaying vegetable and food scrap waste, increase ammonia (NH 4 + ) concentration five- to sixfold relative to leachate unprocessed by larvae. NH 4 + in larva-processed leachate reached levels as high as ∼100 mM. Most of this NH 4 + appears to have come from organic nitrogen within the frass produced by the larvae as they fed on leachate. In nitrate-enriched solutions, BSF larvae also facilitate dissimilatory nitrate reduction to ammonia. The markedly higher concentration of NH 4 + recovered in leachates processed with BSF larvae and concomitant diversion of nutrients into insect biomass (itself a valuable feedstock) indicate that the use of BSF larvae in processing leachate of decaying organic waste could be advantageous in offsetting capital and environmental costs incurred in composting.

Keywords

Compost leachate Black soldier fly larvae Hermetia illucens Treatment Ammonium 

References

  1. 1.
    Batzli, J. M., & Dawson, J. O. (1999). Canadian Journal of Botany, 77, 1373–1377.Google Scholar
  2. 2.
    Berridge, M. J. (1965). Journal of Experimental Biology, 43, 535–552.Google Scholar
  3. 3.
    Bondari, K., & Sheppard, D. C. (1987). Aquaculture and Fisheries Management, 18, 209–220.Google Scholar
  4. 4.
    Brown, A. W. A. (1938). Biochemical Journal, 32, 895–902.Google Scholar
  5. 5.
    Brown, A. W. A. (1938). Biochemical Journal, 32, 903–912.Google Scholar
  6. 6.
    Burgin, A. J., & Hamilton, S. K. (2007). Frontiers in Ecology and the Environment, 5, 89–96.CrossRefGoogle Scholar
  7. 7.
    Conrad, R. (1996). Microbiological Reviews, 60, 609–640.Google Scholar
  8. 8.
    Diaz, L. F., & Trezek, G. J. (1979). Compost Science and Land Utilization, 20, 27–30.Google Scholar
  9. 9.
    Diener, S., et al. (2011). In M. Alamgir, et al. (Eds.). Proc. Waste Safe—2nd International Conference on Solid Waste Management in the Developing Countries, Khulna, Bangladesh, pp.52.Google Scholar
  10. 10.
    Escalante-Semerena, J. C., Blakemore, R. P., & Wolfe, R. S. (1980). Applied and Environmental Microbiology, 40, 429–430.Google Scholar
  11. 11.
    Green, T. R., & Popa, R. (2011). Applied Biochemistry and Biotechnology, 165, 270–278.CrossRefGoogle Scholar
  12. 12.
    Hale, O. L. (1973). Journal of the Georgia Entomological Society, 8, 16–20.Google Scholar
  13. 13.
    Hem, S., Toure, S., Sagbla, C., & Legendre, M. (2008). African Journal of Biotechnology, 7, 1192–1198.Google Scholar
  14. 14.
    Hunter, M. D. (2001). Agricultural and Forest Entomology, 3, 77–84.CrossRefGoogle Scholar
  15. 15.
    Jenkins, D. (1967). Advances in Chemistry Series, 73, 265–280.Google Scholar
  16. 16.
    Krogmann, U., & Woyczechowski, H. (2000). Waste Management & Research, 18, 235–248.Google Scholar
  17. 17.
    Li, Q., et al. (2011). Fuel, 90, 1545–1548.CrossRefGoogle Scholar
  18. 18.
    Mattson, W. J., & Addy, N. D. (1975). Science, 190, 515–522.Google Scholar
  19. 19.
    Myers, H. M., et al. (2008). Environmental Entomology, 37, 11–15.CrossRefGoogle Scholar
  20. 20.
    Newton, G. L., et al. (1977). Journal of Animal Science, 44, 395–400.Google Scholar
  21. 21.
    Popa, R., & Green, T. R. (2011). Insects, leachates and the recycling of nutrients. Journal of Economic Entomology. (in press).Google Scholar
  22. 22.
    Ro, K. S., Choi, H. M., & Tsai, F. J. (1997). Journal of the Environmental Science and Health, Part A, 32, 367–390.CrossRefGoogle Scholar
  23. 23.
    Robinson, W. (1935). Journal of Parasitology, 21, 354–358.CrossRefGoogle Scholar
  24. 24.
    Sealey, W. M., et al. (2011). Journal of the World Aquaculture Society, 42, 34–45.CrossRefGoogle Scholar
  25. 25.
    Serraj, R., Sinclair, T. R., & Purcell, L. C. (1999). Journal of Experimental Botany, 50, 143–155.CrossRefGoogle Scholar
  26. 26.
    Sheppard, D. C., et al. (2002). Journal of Medical Entomology, 39, 695–698.CrossRefGoogle Scholar
  27. 27.
    St-Hilaire, S., et al. (2007). Journal of the World Aquaculture Society, 38, 59–67.CrossRefGoogle Scholar
  28. 28.
    Swank, W. T., et al. (1981). Oecologia, 51, 297–299.CrossRefGoogle Scholar
  29. 29.
    Tiedje, J. M. (1988). In A. J. B. Zehnder (Ed.), Environmental microbiology of anaerobes (pp. 179–244). New York: Wiley.Google Scholar
  30. 30.
    Van Wijnen, H., Van der Wal, R., & Bakker, J. P. (1999). Oecologia, 118, 225–231.CrossRefGoogle Scholar
  31. 31.
    Veraart, A. J., de Klein, J. J. M., & Scheffer, M. (2011). PLoS One, 6, e18508.CrossRefGoogle Scholar
  32. 32.
    Wigglesworth, V. B. (1931). Journal of Experimental Biology, 8, 443–451.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.TGA LLCLake OswegoUSA
  2. 2.Biology DepartmentPortland State UniversityPortlandUSA

Personalised recommendations