Advertisement

Applied Biochemistry and Biotechnology

, Volume 166, Issue 5, pp 1340–1354 | Cite as

Intracellular Detection and Evolution of Site-Specific Proteases Using a Genetic Selection System

  • Kathryn D. VerhoevenEmail author
  • Olvia C. Altstadt
  • Sergey N. Savinov
Article

Abstract

Development of endoproteases, programmed to promote degradation of peptides or proteins responsible for pathogenic states, represents an attractive therapeutic strategy, since such biocatalytic agents could be directed against a potentially unlimited repertoire of extracellular proteinaceous targets. Difficulties associated with engineering enzymes with tailor-made substrate specificities have, however, hindered the discovery of proteases possessing both the efficiency and selectivity to act as therapeutics. Here, we disclose a genetic system, designed to report on site-specific proteolysis through the survival of a bacterial host, and the implementation of this method in the directed evolution of proteases with a non-native substrate preference. The high sensitivity potential of this system was established by monitoring the activity of the Tobacco Etch Virus protease (TEV-Pr) against co-expressed substrates of various recognition level and corroborated by both intracellular and cell-free assays. The genetic selection system was then used in an iterative mode with a library of TEV-Pr mutants to direct the emergence of proteases favoring a nominally poor substrate of the stringently selective protease. The retrieval of mutant enzymes displaying enhanced proteolytic properties against the non-native sequence combined with reduced recognition of the cognate hexapeptide substrate demonstrates the potential of this system for evolving proteases with improved or completely unprecedented properties.

Keywords

Proteases Genetic reporter Protein engineering Genetic selection Directed evolution 

Notes

Acknowledgments

The authors would like to thank B. L. Wanner (Purdue University, West Lafayette, Indiana) for donation of strains and plasmids. This study was sponsored by the National Institutes of Health (grant number: 1R21AG031437-01).

Supplementary material

12010_2011_9522_MOESM1_ESM.doc (1.2 mb)
ESM. 1 (DOC 1239 kb)

References

  1. 1.
    Vellard, M. (2003). The enzyme as drug: Application of enzymes as pharmaceuticals. Current Opinion in Biotechnology, 14, 444–450.CrossRefGoogle Scholar
  2. 2.
    Christie, R. B. (1980). The medical uses of proteolytic enzymes. In A. Wiseman (Ed.), Topics in enzyme and fermentation biotechnology (pp. 25–113). Chichester: Ellis Horwood.Google Scholar
  3. 3.
    Chobotova, K., Vernallis, A. B., & Majid, F. A. A. (2010). Bromelain’s activity and potential as an anti-cancer agent: Current evidence and perspectives. Cancer Letters, 290, 148–156.CrossRefGoogle Scholar
  4. 4.
    Zhou, Y.-X., Karlee, S., Taguchi, H., Planque, S., Nishiyama, Y., & Paul, S. (2002). Prospects for immunotherapeutic proteolytic antibodies. Journal of Immunological Methods, 269, 257–268.CrossRefGoogle Scholar
  5. 5.
    Kumar, J. K. (2008). Lysostaphin: An antistaphylococcal agent. Applied Microbiology and Biotechnology, 80, 555–561.CrossRefGoogle Scholar
  6. 6.
    Uesugi, Y., Usuki, H., Iwabuchi, M., & Hatanaka, T. (2011). Highly potent fibrinolytic serine protease from Streptomyces. Enzyme and Microbial Technology, 48, 7–12.CrossRefGoogle Scholar
  7. 7.
    Kurschus, F. C., & Jenne, D. E. (2010). Delivery and therapeutic potential of human granzyme B. Immunology Reviews, 235, 159–171.Google Scholar
  8. 8.
    Stenman, S. M., Venalainen, J. I., Lindfors, K., Auriola, S., Mauriala, T., Kaukovirta-Norja, A., Jantunen, A., Laurila, K., Qiao, S. W., Sollid, L. M., Mannisto, P. T., Kaukinen, K., & Maki, M. (2009). Enzymatic detoxification of gluten by germinating wheat proteases: Implications for new treatment of celiac disease. Annals of Medicine, 41, 390–400.CrossRefGoogle Scholar
  9. 9.
    Pogson, M., Georgiou, G., & Iverson, B. L. (2009). Engineering next generation proteases. Current Opinion in Biotechnology, 20, 390–397.CrossRefGoogle Scholar
  10. 10.
    Yuen, C. M., & Liu, D. R. (2007). Dissecting protein structure and function using directed evolution. Nature Methods, 4, 995–997.CrossRefGoogle Scholar
  11. 11.
    Labrou, N. E. (2010). Random mutagenesis methods for in vitro directed enzyme evolution. Current Protein & Peptide, 11, 91–100.CrossRefGoogle Scholar
  12. 12.
    Wang, T. W., Zhu, H., Ma, X. Y., Zhang, T., Ma, Y. S., & Wei, D. Z. (2006). Mutant library construction in directed molecular evolution: Casting a wider net. Molecular Biotechnology, 34, 55–68.CrossRefGoogle Scholar
  13. 13.
    Jackel, C., & Hilvert, D. (2010). Biocatalysts by evolution. Current Opinion in Biotechnology, 21, 753–759.CrossRefGoogle Scholar
  14. 14.
    Fernandez-Gacio, A., Uguen, M., & Fastrez, J. (2003). Phage display as a tool for the directed evolution of enzymes. Trends in Biotechnology, 21, 408–414.CrossRefGoogle Scholar
  15. 15.
    Boersma, Y. L., Droge, M. J., & Quax, W. J. (2007). Selection strategies for improved biocatalysts. FEBS Journal, 274, 2181–2195.CrossRefGoogle Scholar
  16. 16.
    Powell, K. A., Ramer, S. W., del Cardayre, S. B., Stemmer, W. P. C., Tobin, M. B., Longchamp, P. F., & Huisman, G. W. (2001). Directed evolution and biocatalysis. Angewandte Chemie International Edition, 40, 3948–3959.CrossRefGoogle Scholar
  17. 17.
    Datta, S., Bucks, M. E., Koley, D., Lim, P. X., & Savinov, S. N. (2009). Functional profiling of p53-binding sites in Hdm2 and Hdmx using a genetic selection system. Bioorganic & Medicinal Chemistry, 18, 6099–6108.CrossRefGoogle Scholar
  18. 18.
    Horswill, A. R., Savinov, S. N., & Benkovic, S. J. (2004). A systematic method for identifying small molecule modulators of protein–protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 101, 15591–15596.CrossRefGoogle Scholar
  19. 19.
    Miller, J. (1972). Experiments in molecular genetics. Cold Spring Harbor Laboratory: Cold Spring Harbor.Google Scholar
  20. 20.
    Platt, R., Drescher, C., Park, S. K., & Phillips, G. J. (2000). Genetic system for reversible integration of DNA constructs and lacZ gene fusions into the Escherichia coli chromosome. Plasmid, 43, 12–23.CrossRefGoogle Scholar
  21. 21.
    Brakmann, S., & Lindemann, B. F. (2004). Generation of mutant libraries using random mutagenesis. In S. Brakmann & A. Schwienhorst (Eds.), Evolutionary methods in biotechnology: Clever tricks for directed evolution (pp. 5–11). Weinheim: Wiley-VCH Verlag Gmbh & Co. KgaA.CrossRefGoogle Scholar
  22. 22.
    Cadwell, R. C., & Joyce, G. F. (1994). Mutagenic PCR. PCR Methods Applied, 3, S136–S140.Google Scholar
  23. 23.
    Cottier, V., Barberis, A., & Lüthi, U. (2006). Novel yeast cell-based assay to screen for inhibitors of human cytomegalovirus protease in a high-throughput format. Antimicrobial Agents and Chemotherapy, 50, 565–571.CrossRefGoogle Scholar
  24. 24.
    Kim, S. Y., Park, K. W., Lee, Y. J., Back, S. H., Goo, J. H., Park, O. K., Jang, S. K., & Park, W. J. (2000). In vivo determination of substrate specificity of hepatitis C virus NS3 protease: Genetic assay for site-specific proteolysis. Analytical Biochemistry, 284, 42–48.CrossRefGoogle Scholar
  25. 25.
    O’Loughlin, T. L., Greene, D. N., & Matsumura, I. (2006). Diversification and specialization of HIV protease function during in vitro evolution. Molecular and Biological Evolution, 23, 764–772.CrossRefGoogle Scholar
  26. 26.
    Sices, H. J., & Kristie, T. M. (1998). A genetic screen for the isolation and characterization of site-specific proteases. Proceedings of the National Academy of Sciences of the United States of America, 95, 2828–2833.CrossRefGoogle Scholar
  27. 27.
    Hu, J. C., Kornacker, M. G., & Hochschild, A. (2000). Escherichia coli one- and two-hybrid systems for the analysis and identification of protein–protein interactions. Methods, 20, 80–94.CrossRefGoogle Scholar
  28. 28.
    Joung, J. K., Ramm, E. I., & Pabo, C. O. (2000). A bacterial two-hybrid selection system for studying protein–DNA and protein–protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 97, 7382–7387.CrossRefGoogle Scholar
  29. 29.
    Lallo, G. D., Castagnoli, L., Ghelardini, P., & Paolozzi, L. (2001). A two-hybrid system based on chimeric operator recognition for studying protein homo/heterodimerization in Escherichia coli. Microbiology, 147, 1651–1656.Google Scholar
  30. 30.
    Park, S.-H., & Raines, R. T. (2000). Genetic selection for dissociative inhibitors of designated protein–protein interactions. Nature Biotechnology, 18, 847–851.CrossRefGoogle Scholar
  31. 31.
    Simoncsits, A., Chen, J., Percipalle, P., Wang, S., Törö, I., & Pongor, S. (1997). Single-chain repressors containing engineered DNA-binding domains of the phage 434 repressor recognize symmetric or asymmetric DNA operators. Journal of Molecular Biology, 267, 118–131.CrossRefGoogle Scholar
  32. 32.
    van den Berg, S., Lofdahl, P. A., Hard, T., & Berglund, H. (2006). Improved solubility of TEV protease by directed evolution. Journal of Biotechnology, 121, 291–298.CrossRefGoogle Scholar
  33. 33.
    Kostallas, G., & Samuelson, P. (2010). Novel fluorescence-assisted whole-cell assay for engineering and characterization of proteases and their substrates. Applied and Environmental Microbiology, 76, 7500–7508.CrossRefGoogle Scholar
  34. 34.
    Khlebnikov, A., Datsenko, K. A., Skaug, T., Wanner, B. L., & Keasling, J. D. (2001). Homogeneous expression of the P(BAD) promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology, 147, 3241–3247.Google Scholar
  35. 35.
    Tong, L. (2002). Viral proteases. Chemical Reviews, 102, 4609–4626.CrossRefGoogle Scholar
  36. 36.
    Seipelt, J., Guarne, A., Bergmann, E., James, M., Sommergruber, W., Fita, I., & Skern, T. (1999). The structures of picornaviral proteinases. Virus Research, 62, 159–168.CrossRefGoogle Scholar
  37. 37.
    Mondigler, M., & Ehrmann, M. (1996). Site-specific proteolysis of the Escherichia coli SecA protein in vivo. Journal of Bacteriology, 178, 2986–2988.Google Scholar
  38. 38.
    Kapust, R. B., Tözsér, J., Fox, J. D., Anderson, D. E., Cherry, S., Copeland, T. D., & Waugh, D. S. (2001). Tobacco etch virus protease: Mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Engineering, 14, 993–1000.CrossRefGoogle Scholar
  39. 39.
    Phan, J., Zdanov, A., Evdokimov, A. G., Tropea, J. E., Peters, H. K., III, Kapust, R. B., Li, M., Wlodawer, A., & Waugh, D. S. (2002). Structural basis for the substrate specificity of tobacco etch virus protease. Journal of Biological Chemistry, 277, 50564–50572.CrossRefGoogle Scholar
  40. 40.
    Kapust, R. B., Tözsér, J., Copeland, T. D., & Waugh, D. S. (2002). The P1′ specificity of tobacco etch virus protease. Biochemical and Biophysical Research Communication, 294, 949–955.CrossRefGoogle Scholar
  41. 41.
    Haldimann, A., & Wanner, B. L. (2001). Conditional-replication, integration, excision, and retrieval plasmid-host systems for gene structure–function studies of bacteria. Journal of Bacteriology, 183, 6384–6393.CrossRefGoogle Scholar
  42. 42.
    Scott, C. P., Abel-Santos, E., Wall, M., Wahnon, D. C., & Benkovic, S. J. (1999). Production of cyclic peptides and proteins in vivo. Proceedings of the National Academy of Sciences of the United States of America, 96, 13638–13643.CrossRefGoogle Scholar
  43. 43.
    Verhoeven, K.D. (2011) Genetic system for detecting, monitoring, and evolving site-specific proteases: Development of therapeutic proteases targeting amyloid-beta peptide, Ph.D. Thesis, Purdue University, West Lafayette.Google Scholar
  44. 44.
    Arenkov, P., Kukhtin, A., Gemmell, A., Voloshchuk, S., Chupeeva, V., & Mirzabekov, A. (2000). Protein microchips: Use for immunoassay and enzymatic reactions. Analytical Biochemistry, 278, 123–131.CrossRefGoogle Scholar
  45. 45.
    Puhl, A. C., Giacomini, C., Irazoqui, G., Batista-Viera, F., Villarino, A., & Terenzi, H. (2009). Covalent immobilization of tobacco-etch-virus NIa protease: A useful tool for cleavage of the histidine tag of recombinant proteins. Biotechnology and Applied Biochemistry, 53, 165–174.CrossRefGoogle Scholar
  46. 46.
    Xie, W. L., & Ma, N. (2010). Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass and Bioenergy, 34, 890–896.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Kathryn D. Verhoeven
    • 1
    Email author
  • Olvia C. Altstadt
    • 1
  • Sergey N. Savinov
    • 1
  1. 1.Department of ChemistryPurdue UniversityWest LafayetteUSA

Personalised recommendations