Applied Biochemistry and Biotechnology

, Volume 166, Issue 5, pp 1236–1247 | Cite as

Substitution of the Catalytic Metal and Protein PEGylation Enhances Activity and Stability of Bacterial Phosphotriesterase

  • Lucia Perezgasga
  • Lorena Sánchez-Sánchez
  • Sergio Aguila
  • Rafael Vazquez-Duhalt
Article

Abstract

Phosphotriesterase, a pesticide-degrading enzyme, from Flavobacterium sp. was cloned and expressed in Escherichia coli. The catalytic zinc ions were replaced by cobalt atoms increasing the catalytic activity of phosphotriesterase on different pesticides. This metal substitution increased the catalytic activity from 1.4 times to 4 times according to the pesticide. In order to explain this catalytic increase, QM/MM calculations were performed. Accordingly, the HOMO energy of the substrate is closer to the LUMO energy of the cobalt-substituted enzyme. The chemical modification of the enzyme surface with poly(ethylene glycol) increased the thermostability and stability against metal chelating agents of both metal phosphotriesterase preparations.

Keywords

Phosphotriesterase Chemical modification Cobalt substitution Stability QM/MM 

Notes

Acknowledgments

This work was funded by the National Council for Science and Technology of Mexico (Grant CONACyT 59497). The authors wish to thank Rosa Roman, Martha Moreno, and Mario Caro for the technical assistance and Dr. Marcela Ayala for helpful suggestions and discussions. The computer analysis was performed using the cluster of the Instituto de Biotecnologia—UNAM.

References

  1. 1.
    Rea, W. J. (1996). Journal of Nutritional and Environmental Medicine, 6, 55–124.CrossRefGoogle Scholar
  2. 2.
    Lowengart, R. A., Peters, J. M., Cicioni, C., Buckley, J., Bernstein, L., Preston-Martin, S., & Rappaport, E. (1987). Journal of the National Cancer Institute, 7, 39–46.Google Scholar
  3. 3.
    McCauley, L. A., Anger, W. K., Keifer, M., Langley, R., Robson, M. G., & Rohlman, D. (2006). Environmental Health Perspectives, 114, 953–960.CrossRefGoogle Scholar
  4. 4.
    Parliamentary Office of Science and Technology (1988). London, UK. Organophosphate, Post note 12.Google Scholar
  5. 5.
    Singh, B. K., & Walker, A. (2006). FEMS Microbiology Reviews, 30, 428–471.CrossRefGoogle Scholar
  6. 6.
    Vilanova, E., & Sogorb, M. A. (1999). Critical Reviews in Toxicology, 29, 21–57.CrossRefGoogle Scholar
  7. 7.
    McConnell, R., Pacheoco, F., Wahlberg, K., Klein, W., Malespin, O., Magnotti, R., Akerblorn, M., & Murria, D. (1999). Environmental Research, 81, 87–91.CrossRefGoogle Scholar
  8. 8.
    Cisar, J. L., & Snyder, G. H. (2000). ACS Symposium Series, 743, 106–126.CrossRefGoogle Scholar
  9. 9.
    Tse, H., Comba, M., & Alaee, M. (2004). Chemosphere, 54, 41–47.CrossRefGoogle Scholar
  10. 10.
    Hart, A. D. M. (1993). Environmental Toxicolology and Chemistry., 12, 321–336.CrossRefGoogle Scholar
  11. 11.
    Hileman, B. (2000). Chemical Engineering News, 78, 34–36.CrossRefGoogle Scholar
  12. 12.
    World Health Organization. (1986). Environmental Health Criteria 63 (pp. 39–48). Geneva: WHO.Google Scholar
  13. 13.
    Leikin, J. B., Thomas, R. G., Walter, F. G., Klein, R., & Meislin, H. W. (2002). Critical Care Medicine, 10, 2346–2354.CrossRefGoogle Scholar
  14. 14.
    Sogorb, M. A., Vilanova, E., & Carrera, V. (2004). Toxicology Letters, 151, 209–233.CrossRefGoogle Scholar
  15. 15.
    Karalliede, L., & Senanayake, N. (1999). Journal of the International Federation of Clinical Chemistry, 11, 4–9.Google Scholar
  16. 16.
    Eyer, P. (2003). Toxicological Reviews, 22, 165–190.CrossRefGoogle Scholar
  17. 17.
    Omburo, G. A., Kuo, J. M., Mullins, L. S., & Raushel, F. M. (1992). Journal of Biological Chemistry, 267, 13278–13283.Google Scholar
  18. 18.
    Benning, M. M., Kuo, J., Raushel, F. M., & Holden, H. M. (1994). Biochemistry, 33, 15001–15007.CrossRefGoogle Scholar
  19. 19.
    Ghanem, E., & Raushel, F. M. (2005). Toxicology and Applied Pharmacology, 207, S459–S470.CrossRefGoogle Scholar
  20. 20.
    Kim, J., Tsai, P. C., Chen, S. L., Himo, F., Almo, S., & Raushel, F. M. (2008). Biochemistry, 47, 9497–9504.CrossRefGoogle Scholar
  21. 21.
    Rochu, D., Viguié, N., Renault, F., Crouzier, D., Froment, M.-T., & Masson, P. (2004). Biochemical Journal, 380, 627–633.CrossRefGoogle Scholar
  22. 22.
    Hemaiz, M. J., Sanchez-Montero, J. M., & Sinisterra, J. V. (1997). Biotechnology and Bioengineering, 55, 252–260.CrossRefGoogle Scholar
  23. 23.
    Castillo, B., Méndez, J., Al-Azzam, W., Barletta, G., & Griebenow, K. (2006). Biotechnology and Bioengineering, 94, 565–574.CrossRefGoogle Scholar
  24. 24.
    Garcia, D., Ortega, F., & Marty, J. L. (1998). Biotechnology and Applied Biochemistry, 27, 49–54.Google Scholar
  25. 25.
    Tinoco, R., & Vazquez-Duhalt, R. (1998). Enzyme and Microbial Technology, 22, 8–12.CrossRefGoogle Scholar
  26. 26.
    Garcia-Arellano, H., Valderrama, B., Saab, G., & Vazquez-Duhalt, R. (2002). Bioconjugate Chemistry, 13, 1336–1344.CrossRefGoogle Scholar
  27. 27.
    De Santis, G., & Jones, J. B. (1999). Current Opinion in Biotechnology, 10, 324–330.CrossRefGoogle Scholar
  28. 28.
    Lundbland, R. L., & Bradshaw, R. A. (1997). Biotechnology and Applied Biochemistry, 26, 143–151.Google Scholar
  29. 29.
    Veronese, F. M., & Pasut, G. (2005). Drug Discovery Today, 10, 1451–1458.CrossRefGoogle Scholar
  30. 30.
    Armstrong, J. K., Hempel, G., Koling, S., Chan, L. S., Fisher, T., Meiselman, H. S., & Garratty, G. (2007). Cancer, 110, 103–111.CrossRefGoogle Scholar
  31. 31.
    Cheng, T. L., Wu, P. Y., Ming-Fang, W., Chen, J. W., & Roffler, S. R. (1999). Bioconjugate Chemistry, 10, 520–528.CrossRefGoogle Scholar
  32. 32.
    Abuchowski, A., van Es, T., Palczuk, N. C., & Davis, F. F. (1977). Journal of Biological Chemistry, 252, 3578–3581.Google Scholar
  33. 33.
    Abuchowski, A., McCoy, J. R., Palczuk, N. C., van Es, T., & Davis, F. F. (1977). Journal of Biological Chemistry, 252, 3582–3586.Google Scholar
  34. 34.
    Caliceti, P., & Veronese, F. (2003). Advanced Drug Delivery Reviews, 55, 1261–1277.CrossRefGoogle Scholar
  35. 35.
    Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning. A laboratory manual. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  36. 36.
    Habeeb, A. F. S. A. (1966). Analytical Biochemistry, 14, 328–336.CrossRefGoogle Scholar
  37. 37.
    Dumas, S. R., Caldwell, D., Wild, J. R., & Raushel, F. M. (1989). Journal of Biological Chemistry, 264, 19659–19665.Google Scholar
  38. 38.
    Jorgensen, W. L., Maxwell, D. S., & Tirado-Rives, J. (1996). Journal of the American Chemical Society, 118, 11225–11236.CrossRefGoogle Scholar
  39. 39.
    Jorgensen, W. L., & Tirado-Rives, J. (1988). Journal of the American Chemical Society, 110, 1657–1666.CrossRefGoogle Scholar
  40. 40.
    Dunning, H. T., Jr., & Hay, P. J. (1976). In H. F. Schaefer (Ed.), Modern theoretical chemistry (Vol. 3). Plenum: New York.Google Scholar
  41. 41.
    Hay, P. J., & Wadt, W. R. (1985). Journal of Chemical Physics, 82, 270–283.CrossRefGoogle Scholar
  42. 42.
    Hay, P. J., & Wadt, W. R. (1985). Journal of Chemical Physics, 82, 299–310.CrossRefGoogle Scholar
  43. 43.
    Wadt, W. R., & Hay, P. J. (1985). Journal of Chemical Physics, 82, 284–298.CrossRefGoogle Scholar
  44. 44.
    Rasband, W. (2011). Image J 1.43 l. National Institute of Health, USA http://rsb.info.nih.gov/ij
  45. 45.
    Aubert, S., Li, Y., & Raushel, F. M. (2004). Biochemistry, 43, 5707–5715.CrossRefGoogle Scholar
  46. 46.
    Kuo, J. M., & Raushel, F. M. (1994). Biochemistry, 33, 4265–4272.CrossRefGoogle Scholar
  47. 47.
    Arima, J., Uesugi, Y., & Hatanaka, T. (2009). Biochimie, 91, 568–576.CrossRefGoogle Scholar
  48. 48.
    Bogin, O., Peretz, M., & Burstein, Y. (1997). Protein Science, 6, 450–458.CrossRefGoogle Scholar
  49. 49.
    McMillen, L., Beacham, I. R., & Burns, D. M. (2003). Biochemical Journal, 372, 625–630.CrossRefGoogle Scholar
  50. 50.
    Kuzuya, K., & Inouye, K. (2001). Journal of Biochemistry, 130, 783–788.CrossRefGoogle Scholar
  51. 51.
    Ben-Meir, D., Spungin, A., Ashkenazi, R., & Blumberg, S. (1993). European Journal of Biochemistry, 12, 107–112.CrossRefGoogle Scholar
  52. 52.
    Adolph, H. W., Maurer, P., Schneider-Bernlöhr, H., Sartorius, C., & Zeppezauer, M. (1991). European Journal of Biochemistry, 201, 615–625.CrossRefGoogle Scholar
  53. 53.
    Hong, S.-B., & Raushel, F. M. (1996). Biochemistry, 35, 10904–10912.CrossRefGoogle Scholar
  54. 54.
    Benning, M. M., Shim, H., Raushel, F. M., & Holden, H. M. (2001). Biochemistry, 40, 2712–2722.CrossRefGoogle Scholar
  55. 55.
    Murphy, R. B., Philipp, D. M., & Friesner, R. A. (2000). Journal of Computational Chemistry, 21, 1442–1457.CrossRefGoogle Scholar
  56. 56.
    Schoneboom, J. C., Cohen, S., Lin, H., Shaik, S., & Thiel, W. (2004). Journal of the American Chemical Society, 126, 4017–4034.CrossRefGoogle Scholar
  57. 57.
    Friesner, R. A., & Guallar, V. (2005). Annual Review of Physical Chemistry, 56, 389–427.CrossRefGoogle Scholar
  58. 58.
    Zhang, X., Wu, R., Song, L., Lin, Y., Lin, M., Cao, Z., Wu, W., & Moi, Y. (2009). Journal of Computational Chemistry, 30, 2388–2401.CrossRefGoogle Scholar
  59. 59.
    Carey, F. A., & Sundberg, R. J. (2007). Advanced organic chemistry, part A: structure and mechanisms. New York: Springer.Google Scholar
  60. 60.
    Kolakovski, J. E., DeFrank, J. J., Harvey, S. P., Szafraniec, L. L., Beaudry, W. T., Lai, K., & Wild, J. R. (1997). Biocatalysis and Biotransformations, 15, 297–312.CrossRefGoogle Scholar
  61. 61.
    Longo, M. A., & Combes, D. (1999). Journal of Chemical Technology and Biotechnology, 74, 25–32.CrossRefGoogle Scholar
  62. 62.
    Liu, K. J., & Parsons, J. L. (1969). Macromolecules, 2, 529–533.CrossRefGoogle Scholar
  63. 63.
    Donato, I. D., Magazú, S., Maisano, G., Majolino, D., Migliardo, P., & Pollicino, A. (1996). Molecular Physics, 87, 1463–1469.Google Scholar
  64. 64.
    Tasaki, K. (1996). Journal of the American Chemistry Society, 118, 8459–8469.CrossRefGoogle Scholar
  65. 65.
    Heymann, B., & Grubmuller, H. (1999). Chemical Physics Letters, 307, 425–432.CrossRefGoogle Scholar
  66. 66.
    Bae, S. C. (2001). Current Opinion in Solid State Materials Sciences, 5, 327–332.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Lucia Perezgasga
    • 1
  • Lorena Sánchez-Sánchez
    • 1
  • Sergio Aguila
    • 1
  • Rafael Vazquez-Duhalt
    • 1
  1. 1.Instituto de BiotecnologíaUNAMCuernavacaMexico

Personalised recommendations