Advertisement

Applied Biochemistry and Biotechnology

, Volume 167, Issue 5, pp 1270–1279 | Cite as

Production of Oils from Acetic Acid by the Oleaginous Yeast Cryptococcus curvatus

  • G. Christophe
  • J. Lara Deo
  • V. Kumar
  • R. Nouaille
  • P. Fontanille
  • C. LarrocheEmail author
Article

Abstract

The feasibility of the conversion of acetic acid, a metabolite commonly obtained during anaerobic fermentation processes, into oils using the yeast Cryptococcus curvatus was reported. This microorganism exhibited very slow growth rates on acetate as carbon source, which led to design a two-stage cultivation process. The first consisted of cell growth on glucose as carbon source until its complete exhaustion. The second step involved the use of acetate as carbon source under nitrogen limitation in order to induce lipid accumulation. A typical experiment performed in a bioreactor involved a preliminary yeast growth with a glucose initial concentration of 15 g/L glucose. Further additions of acetate and nitrogen source allowed a final lipid accumulation up to 50% (w/w). These promising results demonstrated the suitability of the technique proposed.

Keywords

Cryptococcus curvatus Single cell oils Acetic acid Two-staged cultivation Biodiesel 

Notes

Acknowledgments

This work is a part of a scientific program supported by the French agency “Agence Nationale de la Recherche” (ANR) with the reference ANR-08-BIOE-013.

References

  1. 1.
    Ghaly, A. E., Dave, D., Brooks, M. S., & Budge, S. (2010). American Journal of Biochemistry and Biotechnology, 6, 54–76.CrossRefGoogle Scholar
  2. 2.
    Liu, Z. Y., Wang, G. C., & Zhou, B. C. (2008). Bioresource Technology, 99, 4717–4722.CrossRefGoogle Scholar
  3. 3.
    Nigam, P. (2000). In R. K. Robinson & C. A. Batt (Eds.), Encyclopedia of Food Microbiology (Vol. 2, pp. 718–729). New York: Academic.Google Scholar
  4. 4.
    Fischer, C. R., Klein-Marcuschamer, D., & Stephanopoulos, G. (2008). Metabolic Engineering, 10, 295–304.CrossRefGoogle Scholar
  5. 5.
    Li, N., Deng, Z. N., Qin, Y. L., Chen, C. L., & Liang, Z. Q. (2008). Food Technology Biotechnology, 46, 73–79.Google Scholar
  6. 6.
    Zhu, L. Y., Zong, M. H., & Wu, H. (2008). Bioresource Technology, 99, 7881–7885.CrossRefGoogle Scholar
  7. 7.
    Certik, M., Megova, J., & Horenitzky, R. (1999). Journal of General and Applied Microbiology, 45, 289–293.CrossRefGoogle Scholar
  8. 8.
    Li, Y. H., Liu, B., Zhao, Z. B., & Bai, F. W. (2006). Chinese Journal of Biotechnology, 22, 650–656.CrossRefGoogle Scholar
  9. 9.
    Meng, X., Yang, J., Xu, X., Zhang, L., Nie, Q., & Xian, M. (2009). Renewable Energy, 34, 1–5.CrossRefGoogle Scholar
  10. 10.
    Ratledge, C., & Zvi, C. (2008). Lipid Technology, 20, 155–160.CrossRefGoogle Scholar
  11. 11.
    Papanikolaou, S., & Aggelis, G. (2002). Bioresource Technology, 82, 43–49.CrossRefGoogle Scholar
  12. 12.
    Ratledge, C., & Wynn, J. P. (2002). Advances in Applied Microbiology, 51, 1–51.CrossRefGoogle Scholar
  13. 13.
    Li, Y., Zhao, Z. K., & Bai, F. (2007). Enzyme and Microbial Technology, 41, 312–317.CrossRefGoogle Scholar
  14. 14.
    Vicente, G., Bautista, L. F., Rodriguez, R., Gutiérrez, F. J., Sadaba, I., Ruiz-Vazquez, R. M., Torres-Martinez, S., & Garre, V. (2009). Biochemical Engineering Journal, 48, 22–27.CrossRefGoogle Scholar
  15. 15.
    Ratledge, C. (1994). In B. S. Kamel & Y. Kakuda (Eds.), In technological advances in improved and alternative sources of lipids (pp. 235–291). New York: Aspen.CrossRefGoogle Scholar
  16. 16.
    Ratledge, C. (2004). Biochimie, 86, 807–815.CrossRefGoogle Scholar
  17. 17.
    Ykema, A., Verbree, E. C., Kater, M. M., & Smit, H. (1988). Journal of Microbiology, 52, 491–506.Google Scholar
  18. 18.
    Beopoulos, A., Cescut, J., Haddouche, R., Uribelarrea, J. L., Molina-Jouve, C., & Nicaud, J. M. (2009). Progress in Lipid Research, 48, 375–387.CrossRefGoogle Scholar
  19. 19.
    Gill, C. O., Hall, M. J., & Ratledge, C. (1977). Applied and Environmental Microbiology, 33, 231–239.Google Scholar
  20. 20.
    Ratledge, C. (2002). Biochemical Society Transactions, 30, 1047–1050.CrossRefGoogle Scholar
  21. 21.
    Easterling, E. R., French, W. T., Hernandez, R., & Licha, M. (2009). Bioresource Technology, 100, 356–361.CrossRefGoogle Scholar
  22. 22.
    Fakas, S., Papanikolaou, S., Batsos, A., Galiotou-Panayotou, M., Mallouchos, A., & Aggelis, G. (2009). Biomass and Bioenergy, 33, 573–580.CrossRefGoogle Scholar
  23. 23.
    Makri, A., Fakas, S., & Aggelis, G. (2010). Bioresource Technology, 101, 2351–2358.CrossRefGoogle Scholar
  24. 24.
    Papanikolaou, S., Galiotou-Panayotou, M., Fakas, S., & Aggelis, G. (2007). European Journal Lipid Science Technology, 109, 1060–1070.CrossRefGoogle Scholar
  25. 25.
    Fei, Q., Chang, H. N., Shang, L., Choi, J-d-r, Kim, N., & Kang, J. W. (2011). Bioresource Technology, 102, 2695–2701.CrossRefGoogle Scholar
  26. 26.
    Du Preez, J. C., Immelman, M., Kock, J. L. F., & Kilian, S. G. (1995). Biotechnology Letters, 17, 933–938.CrossRefGoogle Scholar
  27. 27.
    Du Preez, J. C., Immelman, M., & Kilian, S. G. (1997). World Journal of Microbiology and Biotechnology, 12, 68–72.CrossRefGoogle Scholar
  28. 28.
    Papanikolaou, S., & Aggelis, G. (2011). European Journal Lipid Science Technology, 113, 1031–1051.CrossRefGoogle Scholar
  29. 29.
    Christophe, G., Kumar, V., Nouaille, R., Gaudet, G., Fontanille, P., Pandey, A., Soccol, C.R. and Larroche, C. (2011) Brazilian. Archiv Biology Technology. in press.Google Scholar
  30. 30.
    Patton, C. J., & Crouch, S. R. (1977). Analytical Chemistry, 49, 464–469.CrossRefGoogle Scholar
  31. 31.
    Folch, J., Lees, M., & Sloane Stanley, G. H. (1957). Journal of Biological Chemistry, 226, 450–497.Google Scholar
  32. 32.
    Cot, M., Loret, M. O., François, J., & Benbadis, L. (2011). FEMS Yeast Research, 7, 22–26.CrossRefGoogle Scholar
  33. 33.
    Morrison, W. R., & Smith, L. M. (1964). Journal of Lipid Research, 5, 600–608.Google Scholar
  34. 34.
    Hassan, M., Blanc, P. J., Granger, L. M., Pareilleux, A., & Goma, G. (1995). Process Biochemistry, 31, 355–361.CrossRefGoogle Scholar
  35. 35.
    Kimura, K., Yamaoka, M., & Kamiska, Y. (2004). Journal of Microbiological Methods, 56, 331–338.CrossRefGoogle Scholar
  36. 36.
    Meesters, P. A. E. P., Huijberts, G. N. M., & Eggingk, G. (1996). Applied Microbiology and Biotechnology, 45, 575–579.CrossRefGoogle Scholar
  37. 37.
    Rattray, J. B. M., Schibeci, A., & Kidby, D. K. (1975). Bacteriological Reviews, 39, 197–231.Google Scholar
  38. 38.
    Wynn, J. P., Hamid, A. A., & Ratledge, C. (1999). Microbiology+, 145, 1911–1917.CrossRefGoogle Scholar
  39. 39.
    Shimada, Y., Sugihara, A., Maruyama, K., Nagao, T., Nakayama, S., Nakano, H., & Tominaga, Y. (1995). JAOCS, 72, 1323–1327.CrossRefGoogle Scholar
  40. 40.
    Papanikolaou, S., Komaitis, M., & Aggelis, G. (2004). Bioresource Technology, 95, 287–291.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • G. Christophe
    • 1
  • J. Lara Deo
    • 1
  • V. Kumar
    • 1
  • R. Nouaille
    • 1
    • 2
  • P. Fontanille
    • 1
  • C. Larroche
    • 1
    Email author
  1. 1.Laboratoire de Génie Chimique et Biochimique, Polytech Clermont-FerrandClermont Université, Université Blaise PascalAubièreFrance
  2. 2.Laboratoire Microorganismes: Génome et Environnement, UMR CNRS 602Clermont Université, Université Blaise PascalAubièreFrance

Personalised recommendations