Advertisement

Applied Biochemistry and Biotechnology

, Volume 166, Issue 5, pp 1183–1191 | Cite as

Biogas Production Potential and Kinetics of Microwave and Conventional Thermal Pretreatment of Grass

  • Lianhua Li
  • Xiaoying Kong
  • Fuyu Yang
  • Dong Li
  • Zhenhong Yuan
  • Yongming Sun
Article

Abstract

Pretreatment methods play an important role in the improvement of biogas production from the anaerobic digestion of energy grass. In this study, conventional thermal and microwave methods were performed on raw material, namely, Pennisetum hybrid, to analyze the effect of pretreatment on anaerobic digestion by the calculation of performance parameters using Logistic function, modified Gompertz equation, and transference function. Results indicated that thermal pretreatment improved the biogas production of Pennisetum hybrid, whereas microwave method had an adverse effect on the performance. All the models fit the experimental data with R 2 > 0.980, and the Reaction Curve presented the best agreement in the fitting process. Conventional thermal pretreatment showed an increasing effect on maximum production rate and total methane produced, with an improvement of around 7% and 8%, respectively. With regard to microwave pretreatment, maximum production rate and total methane produced decreased by 18% and 12%, respectively.

Keywords

Pennisetum hybrid Anaerobic fermentation Mathematical model Pretreatment 

Notes

Acknowledgment

This research was supported by the National High Technology Research and Development Program of China (Project 2009AA10Z405).

Supplementary material

12010_2011_9503_MOESM1_ESM.doc (2.3 mb)
ESM 1 (DOC 2359 kb)

References

  1. 1.
    Jagadabhi, P. S., Kaparaju, P., & Rintala, J. (2011). Two-stage anaerobic digestion of tomato, cucumber, common reed and grass silage in leach-bed reactors and upflow anaerobic sludge blanket reactors. Bioresource Technology, 102(7), 4726–4733.CrossRefGoogle Scholar
  2. 2.
    Somerville, C., Youngs, H., Taylor, C., Davis, S. C., & Long, S. P. (2010). Feedstocks for lignocellulosic biofuels. Science, 329(5993), 790–792.CrossRefGoogle Scholar
  3. 3.
    Nizami, A. S., Korres, N. E., & Murphy, J. D. (2009). Review of the integrated process for the production of grass biomethane. Environmental Science & Technology, 43(22), 8496–8508.CrossRefGoogle Scholar
  4. 4.
    Lewandowski, I., Scurlock, J. M. O., Lindvall, E., & Christou, M. (2003). The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy, 25(4), 335–361.CrossRefGoogle Scholar
  5. 5.
    Prochnow, A., Heiermann, M., Plochl, M., Linke, B., Idler, C., Amon, T., & Hobbs, P. J. (2009). Bioenergy from permanent grassland—a review: 1. Biogas. Bioresource Technology, 100(21), 4931–4944.CrossRefGoogle Scholar
  6. 6.
    Taherzadeh, M. J., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: A review. International Journal of Molecular Sciences, 9(9), 1621–1651.CrossRefGoogle Scholar
  7. 7.
    Sun, Y. M., Li, L. H., Li, D., Ma, L. L., Yuan, Z. H., & Kong, X. Y. (2010). Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China. International Journal of Hydrogen Energy, 35(13), 7261–7266.CrossRefGoogle Scholar
  8. 8.
    Hendriks, A. T. W. M., & Zeeman, G. (2009). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18.CrossRefGoogle Scholar
  9. 9.
    Kratky, L., & Jirout, T. (2011). Biomass size reduction machines for enhancing biogas production. Chemical Engineering and Technology, 34(3), 391–399.CrossRefGoogle Scholar
  10. 10.
    Zhu, S. D., Wu, Y. X., Yu, Z. N., Liao, J. T., & Zhang, Y. (2005). Pretreatment by microwave/alkali of rice straw and its enzymic hydrolysis. Process Biochemistry, 40(9), 3082–3086.CrossRefGoogle Scholar
  11. 11.
    Liu, Y., Wand, G., Pu, C., & Liu, Z. (2010). Effect of bisulfite pretreatment on enzymatic hydrolysis of corn stalk. Chemistry and Industry of Forest Products, 30(4), 73–77.Google Scholar
  12. 12.
    Cara, C., Ruiz, E., Oliva, J. M., Saez, F., & Castro, E. (2008). Conversion of olive tree biomass into fermentable sugars by dilute acid pretreatment and enzymatic saccharification. Bioresource Technology, 99(6), 1869–1876.CrossRefGoogle Scholar
  13. 13.
    Gao, M. A., Xu, F., Li, S. R., Ji, X. C., Chen, S. F., & Zhang, D. Q. (2010). Effect of SC-CO2 pretreatment in increasing rice straw biomass conversion. Biosystems Engineering, 106(4), 470–475.CrossRefGoogle Scholar
  14. 14.
    Toteci, I., Kennedy, K. J., & Droste, R. L. (2009). Evaluation of continuous mesophilic anaerobic sludge digestion after high temperature microwave pretreatment. Water Research, 43(5), 1273–1284.CrossRefGoogle Scholar
  15. 15.
    Eskicioglu, C., Kennedy, K. J., & Droste, R. L. (2007). Enhancement of batch waste activated sludge digestion by microwave pretreatment. Water Environment Research, 79(11), 2304–2317.CrossRefGoogle Scholar
  16. 16.
    Marin, J., Kennedy, K. J., & Eskicioglu, C. (2011). Enhanced solubilization and anaerobic biodegradability of source-separated kitchen waste by microwave pre-treatment. Waste Management & Research, 29(2), 208–218.CrossRefGoogle Scholar
  17. 17.
    Lo, K. V., Yu, Y., Lo, I. W., & Liao, P. H. (2010). Treatment of dairy manure using the microwave enhanced advanced oxidation process under a continuous mode operation. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 45(8), 804–809.CrossRefGoogle Scholar
  18. 18.
    Himmelsbach, J. N., Raman, D. R., Anex, R. P., Burns, R. T., & Faulhabcr, C. R. (2010). Effect of ammonia soaking pretreatment and enzyme addition on biochemical methane potential of switchgrass. Transactions of the ASABE, 53(6), 1921–1927.Google Scholar
  19. 19.
    Masse, D., Gilbert, Y., Savoie, P., Belanger, G., Parent, G., & Babineau, D. (2010). Methane yield from switchgrass harvested at different stages of development in Eastern Canada. Bioresource Technology, 101(24), 9536–9541.CrossRefGoogle Scholar
  20. 20.
    Mahnert, P., & Linke, B. (2009). Kinetic study of biogas production from energy crops and animal waste slurry: Effect of organic loading rate and reactor size. Environmental Technology, 30(1), 93–99.CrossRefGoogle Scholar
  21. 21.
    Malafaia, P. A. M., Filho, S. C. V., & Vieira, R. A. M. (1999). Kinetic parameters of ruminal degradation estimated with a non-automated system to measure gas production. Livestock Production Science, 58(1), 65–73.CrossRefGoogle Scholar
  22. 22.
    Pommier, S., Chenu, D., Quintard, M., & Lefebvre, X. (2007). A logistic model for the prediction of the influence of water on the solid waste methanization in landfills. Biotechnology and Bioengineering, 97(3), 473–482.CrossRefGoogle Scholar
  23. 23.
    Gadhamshetty, V., Arudchelvam, Y., Nirmalakhandan, N., & Johnson, D. C. (2010). Modeling dark fermentation for biohydrogen production: ADM1-based model vs. Gompertz model. International Journal of Hydrogen Energy, 35(2), 479–490.CrossRefGoogle Scholar
  24. 24.
    Redzwan, G., & Banks, C. (2004). The use of a specific function to estimate maximum methane production in a batch-fed anaerobic reactor. Journal of Chemical Technology and Biotechnology, 79(10), 1174–1178.CrossRefGoogle Scholar
  25. 25.
    Donoso-Bravo, A., Perez-Elvira, S. I., & Fdz-Polanco, F. (2010). Application of simplified models for anaerobic biodegradability tests. Evaluation of pre-treatment processes. Chemical Engineering Journal, 160(2), 607–614.CrossRefGoogle Scholar
  26. 26.
    Seppala, M., Paavola, T., Lehtomaki, A., & Rintala, J. (2009). Biogas production from boreal herbaceous grasses—specific methane yield and methane yield per hectare. Bioresource Technology, 100(12), 2952–2958.CrossRefGoogle Scholar
  27. 27.
    Lehtomaki, A., Huttunen, S., Lehtinen, T., & Rintala, J. A. (2008). Anaerobic digestion of grass silage in batch leach bed processes for methane production. Bioresource Technology, 99(8), 3267–3278.CrossRefGoogle Scholar
  28. 28.
    Pauss, A., Jackowiak, D., Frigon, J. C., Ribeiro, T., & Guiot, S. (2011). Enhancing solubilisation and methane production kinetic of switchgrass by microwave pretreatment. Bioresource Technology, 102(3), 3535–3540.CrossRefGoogle Scholar
  29. 29.
    Wang, Q., Noguchi, C., Hara, Y., Sharon, C., Kakimoto, K., & Kato, Y. (1997). Studies on anaerobic digestion mechanism: influence of pretreatment temperature on biodegradation of waste activated sludge. Environmental Technology, 18(10), 999–1008.CrossRefGoogle Scholar
  30. 30.
    Laser, M., Schulman, D., Allen, S. G., Lichwa, J., Antal, M. J., & Lynd, L. R. (2002). A comparison of liquid hot water and steam pretreatments of sugar cane bagasse for bioconversion to ethanol. Bioresource Technology, 81(1), 33–44.CrossRefGoogle Scholar
  31. 31.
    Zhu, J. Y., Wan, C. X., & Li, Y. B. (2010). Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment. Bioresource Technology, 101(19), 7523–7528.CrossRefGoogle Scholar
  32. 32.
    Altas, L. (2009). Inhibitory effect of heavy metals on methane-producing anaerobic granular sludge. Journal of Hazardous Materials, 162(2–3), 1551–1556.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lianhua Li
    • 1
  • Xiaoying Kong
    • 1
  • Fuyu Yang
    • 2
  • Dong Li
    • 1
  • Zhenhong Yuan
    • 1
  • Yongming Sun
    • 1
  1. 1.Guangzhou Institute of Energy Conversion, Key Laboratory of Renewable Energy and Gas HydrateChinese Academy of SciencesGuanzhouPeople’s Republic of China
  2. 2.Grassland InstituteChina Agricultural UniversityBeijingPeople’s Republic of China

Personalised recommendations