Applied Biochemistry and Biotechnology

, Volume 166, Issue 4, pp 1034–1046 | Cite as

Solid-State Fermentation of Mortierella isabellina for Lipid Production from Soybean Hull

Article

Abstract

Soybean hull, generated from soybean processing, is a lignocellulosic material with limited industrial applications and little market value. This research is exploring a new application of soybean hull to be converted to fungal lipids for biodiesel production through solid-state fermentation. Mortierella isabellina was selected as the oil producer because of its high lipid content at low C/N ratio. Several cultivation factors were investigated, including moisture content, inoculums size, fungal spore age, and nutrient supplements, in an attempt to enhance the lipid production of the solid-state fermentation process. The results showed that lipid production with the increase of the moisture content and the spore age, while decreased as the size of inoculums increased. Nutrients addition (KH2PO4 1.2 mg and MgSO4 0.6 mg/g soybean hull) improved the lipid production. The total final lipid reached 47.9 mg lipid from 1 g soybean hull after the conversion, 3.3-fold higher than initial lipid reserve in the soybean hull. The fatty acid profile analysis indicated that fatty acid content consisted of 30.0% of total lipid, and 80.4% of total fatty acid was C16 and C18. Therefore, lipid production from soybean hull is a possible option to enable soybean hull as a new resource for biodiesel production and to enhance the overall oil production from soybeans.

Keywords

Biodiesel Solid-state fermentation Mortierella isabellina Soybean hull 

References

  1. 1.
    Somerville, C., et al. (2010). Science, 329, 790–792.CrossRefGoogle Scholar
  2. 2.
    Lynd, L. R., et al. (2002). Microbiology and Molecular Biology Reviews, 66, 506–577.CrossRefGoogle Scholar
  3. 3.
    Steen, E. J., et al. (2010). Nature, 463, 559–U182.CrossRefGoogle Scholar
  4. 4.
    Kumar, R., Singh, S., & Singh, O. V. (2008). Journal of Industrial Microbiology & Biotechnology, 35, 377–391.CrossRefGoogle Scholar
  5. 5.
    Fall, R., Phelps, P., & Spindler, D. (1984). Applied and Environmental Microbiology, 47, 1130–1134.Google Scholar
  6. 6.
    Kumar, P., et al. (2009). Industrial and Engineering Chemistry Research, 48, 3713–3729.CrossRefGoogle Scholar
  7. 7.
    Yu, X., et al. (2011). Bioresource Technology, 102, 6134–6140.CrossRefGoogle Scholar
  8. 8.
    Ratledge, C. (1982). Enzyme and Microbial Technology, 4, 58–60.CrossRefGoogle Scholar
  9. 9.
    Meng, X., et al. (2009). Renewable Energy, 34, 1–5.CrossRefGoogle Scholar
  10. 10.
    Hoffmeister, D., & Keller, N. P. (2007). Natural Product Reports, 24, 393–416.CrossRefGoogle Scholar
  11. 11.
    Suzuki, O. Recent trends of oleochemicals by biotechnology. in World conference on oleochemicals. 1990. Kuala lumpur.Google Scholar
  12. 12.
    Papanikolaou, S., Komaitis, M., & Aggelis, G. (2004). Bioresource Technology, 95, 287–291.CrossRefGoogle Scholar
  13. 13.
    Fakas, S., et al. (2009). Biomass and Bioenergy, 33, 573–580.CrossRefGoogle Scholar
  14. 14.
    Graminha, E. B. N., et al. (2008). Animal Feed Science and Technology, 144, 1–22.CrossRefGoogle Scholar
  15. 15.
    Mitchell, D. A., & Krieger, N. (2006). Solid-state fermentation bioreactors fundamentals of design and operation. Berlin: Springer.CrossRefGoogle Scholar
  16. 16.
    Economou, C. N., et al. (2010). Bioresource Technology, 101, 1385–1388.CrossRefGoogle Scholar
  17. 17.
    Krishna, C. (2005). Critical Reviews in Biotechnology, 25, 1–30.CrossRefGoogle Scholar
  18. 18.
    Holker, U., Hofer, M., & Lenz, J. (2004). Applied Microbiology and Biotechnology, 64, 175–186.CrossRefGoogle Scholar
  19. 19.
    Mitchell, D. A., et al. (2000). Process Biochemistry, 35, 1211–1225.CrossRefGoogle Scholar
  20. 20.
    Mitchell, D. A., et al. (1999). Process Biochemistry, 35, 167–178.CrossRefGoogle Scholar
  21. 21.
    Hardin, M. T., Mitchell, D. A., & Howes, T. (2000). Biotechnology and Bioengineering, 67, 274–282.CrossRefGoogle Scholar
  22. 22.
    Stuart, D. M., & Mitchell, D. A. (2003). Journal of Chemical Technology and Biotechnology, 78, 1180–1192.CrossRefGoogle Scholar
  23. 23.
    Stuart, D. M., et al. (1999). Biotechnology and Bioengineering, 63, 383–391.CrossRefGoogle Scholar
  24. 24.
    Ashley, V. M., Mitchell, D. A., & Howes, T. (1999). Biochemical Engineering Journal, 3, 141–150.CrossRefGoogle Scholar
  25. 25.
    Hamidi-Esfahani, Z., Shojaosadati, S. A., & Rinzema, A. (2004). Biochemical Engineering Journal, 21, 265–272.CrossRefGoogle Scholar
  26. 26.
    Nagel, F., et al. (2001). Biotechnology and Bioengineering, 72, 231–243.CrossRefGoogle Scholar
  27. 27.
    Borzani, W., et al. (1999). Brazilian Journal of Chemical Engineering, 16, 101–102.Google Scholar
  28. 28.
    Scotti, C. T., et al. (2001). Biochemical Engineering Journal, 7, 1–5.CrossRefGoogle Scholar
  29. 29.
    Zheng, Z. X., & Shetty, K. (1998). Journal of Agricultural and Food Chemistry, 46, 783–787.CrossRefGoogle Scholar
  30. 30.
    Santoro, N., et al. (2010). Bioenergy Research, 3, 93–102.CrossRefGoogle Scholar
  31. 31.
    Luo, W., Vrijmoed, L. L. P., & Jones, E. B. G. (2005). Botanica Marina, 48, 379–386.CrossRefGoogle Scholar
  32. 32.
    Archer, D. B., & Peberdy, J. F. (1997). Critical Reviews in Biotechnology, 17, 273–306.CrossRefGoogle Scholar
  33. 33.
    Schirmer-Michel, A. C., et al. (2008). Bioresource Technology, 99, 2898–2904.CrossRefGoogle Scholar
  34. 34.
    Himmel, M. E., et al. (2007). Science, 315, 804–807.CrossRefGoogle Scholar
  35. 35.
    Sanchez, C. (2009). Biotechnology Advances, 27, 185–194.CrossRefGoogle Scholar
  36. 36.
    Ma, F. R., & Hanna, M. A. (1999). Bioresource Technology, 70, 1–15.CrossRefGoogle Scholar
  37. 37.
    Da Silveira, C. M., Oliveira, M. D., & Badiale-Furlong, E. (2010). Boletim Do Centro De Pesquisa De Processamento De Alimentos, 28, 133–140.Google Scholar
  38. 38.
    Abu, O. A., et al. (2000). Bioresource Technology, 72, 189–192.CrossRefGoogle Scholar
  39. 39.
    Lin, H., et al. (2010). Bioresource Technology, 101, 7556–7562.CrossRefGoogle Scholar
  40. 40.
    Certik, M., et al. (2006). Food Technology And Biotechnology, 44, 75–82.Google Scholar
  41. 41.
    Fakas, S., et al. (2009). Bioresource Technology, 100, 6118–6120.CrossRefGoogle Scholar
  42. 42.
    Peng, X. W., & Chen, H. Z. (2008). Bioresource Technology, 99, 3885–3889.CrossRefGoogle Scholar
  43. 43.
    Oriol, E., et al. (1988). Applied Microbiology and Biotechnology, 27, 498–503.Google Scholar
  44. 44.
    Sharma, R. K., & Arora, D. S. (2010). Bioresource Technology, 101, 9248–9253.CrossRefGoogle Scholar
  45. 45.
    Gervais, P., & Molin, P. (2003). Biochemical Engineering Journal, 13, 85–101.CrossRefGoogle Scholar
  46. 46.
    Peng, X. W., & Chen, H. Z. (2007). Annals of Microbiology, 57, 239–242.CrossRefGoogle Scholar
  47. 47.
    Pandey, A., et al. (1999). Current Science, 77, 149–162.Google Scholar
  48. 48.
    Ito, K., et al. (2011). Journal of Bioscience and Bioengineering, 111, 300–305.CrossRefGoogle Scholar
  49. 49.
    Nandakumar, M. P., et al. (1994). Process Biochemistry, 29, 545–551.CrossRefGoogle Scholar
  50. 50.
    Wyman, C. E., & Yang, B. (2008). Biofuels, Bioproducts and Biorefining, 2, 26–40.CrossRefGoogle Scholar
  51. 51.
    Mielenz, J. R., Bardsley, J. S., & Wyman, C. E. (2009). Bioresource Technology, 100, 3532–3539.CrossRefGoogle Scholar
  52. 52.
    Bartnicki-Garcia, S. (1963). Bacteriological Reviews, 96, 293–304.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Bioproducts and Biosystems EngineeringUniversity of MinnesotaSt. PaulUSA

Personalised recommendations