Applied Biochemistry and Biotechnology

, Volume 166, Issue 3, pp 700–710 | Cite as

Interspecies Interaction of Signal Peptide PapR Secreted by Bacillus cereus and Its Effect on Production of Antimicrobial Peptide

  • In-Cheol Yeo
  • Nam Keun Lee
  • Chang-Jun Cha
  • Young Tae HahmEmail author


This study was carried out to investigate the interspecies interaction of PapR peptide secreted by Bacillus cereus on production of BSAP-254, an antimicrobial peptide produced by Bacillus subtilis SC-8 isolated from the Korean fermented soybean paste and exhibited narrow antagonistic activity against the B. cereus group, but not against other foodborne pathogens. PapR is a signal peptide that activates PlcR, which is a pleiotropic regulator controlling the expression of various virulence factors in B. cereus. When B. subtilis SC-8 was co-cultured with B. cereus, it completely inhibited the growth of B. cereus within 12 h, and the rate of BSAP-254 production was increased 34.2% at 12 h. Furthermore, 5 μM of synthetic PapR peptide added to the culture of B. subtilis SC-8 increased the rate of BSAP-254 production up to 59.7%. The growth of B. subtilis SC-8, however, was not significantly different with or without the addition of PapR. When B. cereus papR mutant was co-cultured with B. subtilis SC-8, the growth of the mutant was not inhibited and the rate of BSAP-254 production was decreased by 45%.


Bacillus cereus group PapR Bacillus subtilis Antimicrobial peptide Interspecies interaction 



We thank Dr. Andrei P. Pomerantsev and Dr. Stephen H. Leppla (National Institutes of Health, Bethesda, MD, USA) for the gift of B. cereus papR mutant strain. This study was financially supported by the Basic Research Program (no. 2009–0073489) through the National Research Foundation of Korea (NRF) supported by the Ministry of Education, Science and Technology.


  1. 1.
    Drobniewski, F. A. (1993). Clinical Microbiology Reviews, 6, 324–338.Google Scholar
  2. 2.
    Rasko, D. A., Altherr, M. R., Han, C. S., & Ravel, J. (2005). FEMS Microbiology Reviews, 29, 303–329.Google Scholar
  3. 3.
    Stenfors Arnesen, L. P., Fagerlund, A., & Granum, P. E. (2008). FEMS Microbiology Reviews, 32, 579–606.CrossRefGoogle Scholar
  4. 4.
    Bhunia, A. K. (2008). New York: Springer, pp. 135–142.Google Scholar
  5. 5.
    Burgos, M. J. G., Kovács, Á. T., Mirończuk, A. M., Abriouel, H., Gálvez, A., & Kuipers, O. P. (2009). BMC Microbiology, 9, 227.CrossRefGoogle Scholar
  6. 6.
    Beecher, D. J., Pulido, J. S., Barney, N. P., & Wong, A. C. (1995). Infection and Immunity, 63, 632–639.Google Scholar
  7. 7.
    Miller, J. M., Hair, J. G., Hebert, M., Heber, L., Robert, F. J., & Weyant, R. S., Jr. (1997). Journal of Clinical Microbiology, 35, 504–507.Google Scholar
  8. 8.
    Arnaout, M., Tamburro, R., Bodner, S., Sandlund, J., Rivera, G., Pui, C., et al. (1999). Journal of Pediatric Hematology/Oncology, 21, 431–435.CrossRefGoogle Scholar
  9. 9.
    Hilliard, N. J., Schelonka, R. L., & Waites, K. B. (2003). Journal of Clinical Microbiology, 41, 3441–3444.CrossRefGoogle Scholar
  10. 10.
    Callegan, M. C., Kane, S. T., Cochran, D. C., Novosad, B., Gilmore, M. S., Gominet, M., et al. (2005). Investigative Ophthalmology & Visual Science, 46, 3233–3238.CrossRefGoogle Scholar
  11. 11.
    Baillie, L., & Read, T. D. (2001). Current Opinion in Microbiology, 24, 78–81.CrossRefGoogle Scholar
  12. 12.
    Mock, M., & Fouet, A. (2001). Annual Review of Microbiology, 55, 47–71.CrossRefGoogle Scholar
  13. 13.
    Jernigan, J. A., Stephens, D. S., Ashford, D. A., Omenaca, C., Topiel, M. S., Galbraith, M., et al. (2001). Emerging Infectious Diseases, 7, 933–944.CrossRefGoogle Scholar
  14. 14.
    Kortiranta, A., Lounatmaa, K., & Haapasalo, M. (2000). Microbes and Infection, 2, 189–198.CrossRefGoogle Scholar
  15. 15.
    Nicholson, W. L., Munakata, N., Horneck, G., Melosh, H. J., & Setlow, P. (2000). Microbiology and Molecular Biology Reviews, 64, 548–572.CrossRefGoogle Scholar
  16. 16.
    Fuqua, C., & Greenberg, E. P. (2002). Nature Reviews Molecular Cell Biology, 3, 685–695.CrossRefGoogle Scholar
  17. 17.
    Kleerebezem, M., Quadri, L. E., Kuipers, O. P., & de Vos, W. M. (1997). Molecular Microbiology, 24, 895–904.CrossRefGoogle Scholar
  18. 18.
    Økstad, O. A., Gominet, M., Purnelle, B., Rose, M., Lereclus, D., & Kolstø, A. B. (1999). Microbiology, 145, 3129–3138.CrossRefGoogle Scholar
  19. 19.
    Slamti, L., & Lereclus, D. (2002). EMBO Journal, 21, 4550–4559.CrossRefGoogle Scholar
  20. 20.
    Declerck, N., Bouillant, L., Chaix, D., Rugani, N., Slamti, L., Hoh, F., et al. (2007). Proceedings of the National Academy of Science of the United States of America, 104, 18490–18495.CrossRefGoogle Scholar
  21. 21.
    Bouillaut, L., Perchat, S., Arold, S., Zorrilla, S., Slamti, L., Henry, C., et al. (2008). Nucleic Acids Research, 36, 3791–3801.CrossRefGoogle Scholar
  22. 22.
    Gohar, M., Faegri, K., Perchat, S., Ravnum, S., Økstad, O. A., Gominet, M., et al. (2008). PLoS One, 3, e2793.CrossRefGoogle Scholar
  23. 23.
    Stein, T. (2005). Molecular Microbiology, 56, 845–857.CrossRefGoogle Scholar
  24. 24.
    Raaijmakers, J. M., de Bruijn, I., Nybroe, O., & Ongena, M. (2010). FEMS Microbiology Reviews, 34, 1037–1062.Google Scholar
  25. 25.
    Cladera-Olivera, F., Caron, G. R., & Brandelli, A. (2004). Letters in Applied Microbiology, 38, 251–256.CrossRefGoogle Scholar
  26. 26.
    Lee, N. K., Park, J. W., Cho, I. J., Kim, B. Y., Kwon, K. O., & Hahm, Y. T. (2008). Korean Journal Food Science and Technology, 40, 669–673.Google Scholar
  27. 27.
    Lee, N. K., Yeo, I. C., Park, J. W., Kang, B. S., & Hahm, Y. T. (2010). Journal of Bioscience and Bioengineering, 110, 298–303.CrossRefGoogle Scholar
  28. 28.
    Sivapathasekaran, C., Mukherjee, S., Samanta, R., & Sen, R. (2009). Analytical and Bioanalytical Chemistry, 395, 845–854.CrossRefGoogle Scholar
  29. 29.
    Pomerantsev, A. P., Pomerantseva, O. M., Camp, A. S., Radhika, R., Goldman, S., & Leppla, S. H. (2009). FEMS Immunology and Medical Microbiology, 55, 361–377.CrossRefGoogle Scholar
  30. 30.
    Maqueda, M., Sánchez-Hidalgo, M., Fernández, M., Montalbán-López, M., Valdivia, E., & Martinez-Bueno, M. (2008). FEMS Microbiology Reviews, 32, 2–22.CrossRefGoogle Scholar
  31. 31.
    Yeo, I. C., Lee, N. K., Cha, C. J., & Hahm, Y. T. (2011). Journal of Bioscience and Bioengineering, 112, 338–344.CrossRefGoogle Scholar
  32. 32.
    Lee, N. K., Yeo, I. C., Park, J. W., & Hahm, Y. T. (2011). Applied Biochemistry and Biotechnology, 165, 235–242.CrossRefGoogle Scholar
  33. 33.
    Straus, S. K., & Hancock, R. E. W. (2006). Biochimica et Biophysica Acta, 1758, 1215–1223.CrossRefGoogle Scholar
  34. 34.
    Røssland, E., Langsrud, T., Granum, P. E., & Sørhaug, T. (2005). International Journal of Food Microbiology, 98, 193–200.CrossRefGoogle Scholar
  35. 35.
    Atlas, R. M. (1986). & Bartha, R. Menlo Park: Benjamin-Cummings.Google Scholar
  36. 36.
    Camilli, A., & Bassler, B. L. (2006). Science, 311, 1113–1116.CrossRefGoogle Scholar
  37. 37.
    Romero, D., Traxler, M. F., López, D., & Kolter, R. (2011). Chemical Reviews, 111(9), 5492–5505.CrossRefGoogle Scholar
  38. 38.
    Sieprawska-Lupa, M., Mydel, P., Krawczyk, K., Wójcik, K., Puklo, M., Lupa, B., et al. (2004). Antimicrobial Agents and Chemotherapy, 48, 4673–4679.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • In-Cheol Yeo
    • 1
  • Nam Keun Lee
    • 1
  • Chang-Jun Cha
    • 1
  • Young Tae Hahm
    • 1
    Email author
  1. 1.Department of Biotechnology (BK21 Program)Chung-Ang UniversityAnseongRepublic of Korea

Personalised recommendations