Advertisement

Applied Biochemistry and Biotechnology

, Volume 166, Issue 3, pp 576–589 | Cite as

Soybean Hulls Pretreated Using Thermo-Mechanical Extrusion—Hydrolysis Efficiency, Fermentation Inhibitors, and Ethanol Yield

  • Juhyun Yoo
  • Sajid AlaviEmail author
  • Praveen Vadlani
  • Keith C. Behnke
Article

Abstract

Soybean hulls were subjected to thermo-mechanical extrusion pretreatment at various in-barrel moisture contents and screw speeds. Extrusion degraded the lignocellulosic structure and enhanced enzymatic hydrolysis of soybean hulls, with up to 155% increase in glucose yield as compared to untreated substrate. Greater glucose yields were observed at higher in-barrel moistures (45% and 50%) and lower screw speed (280 and 350 rpm). Maximum 74% cellulose to glucose conversion resulted from using a two-enzyme cocktail consisting of cellulase and β-glucosidase. Conversion increased to 87% when a three-enzyme cocktail having a cell wall degrading enzyme complex was used for hydrolysis. Fermentation inhibitors, such as furfural, 5-(hydroxymethyl)-2-furaldehyde (HMF), and acetic acid, were found in the extrusion pretreated soybean hulls and hydrolysate. However, their concentrations were below the known thresholds for inhibition. Fermentation of hydrolysate by Saccharomyces cerevisiae led to high yields of ethanol, with concentration ranging from 13.04 to 15.44 g/L.

Keywords

Extrusion Pretreatment Soybean hulls Hydrolysis Inhibitors Ethanol 

Notes

Acknowledgements

This study was supported by funds from the Kansas Soybean Commission and the Kansas State University Center for Sustainable Energy. The authors would like to acknowledge Archer Daniels Midland Company and Lesaffre Group for their generous support in providing soybean hulls and yeast, respectively. We would like to thank Eric Maichel for conducting all extrusion runs and also Sunil Bansal, Khushal Brijwani, and Nanjunda Ananda for their assistance in this study. This is Kansas Agricultural Experiment Station contribution number 11-172-J

References

  1. 1.
    Monthly Energy Review July 2011. U.S. Energy Information Administration. DOE/EIA-0035(2011/07). Available from: http://www.eia.gov/totalenergy/data/monthly. Accessed July 30, 2011.
  2. 2.
    Service, R. F. (2010). Science, 329, 784–785.CrossRefGoogle Scholar
  3. 3.
    Lamsal, B. P., Yoo, J., Brijwani, K., & Alavi, S. (2010). Biomass Bioenerg. 34 DOI:dx.doi.org , 1703–1710.Google Scholar
  4. 4.
    Yoo, J., Alavi, S., Vadlani, P., & Amanor-Boadu, V. (2011). Bioresource Technology, 102, 7583–7590.CrossRefGoogle Scholar
  5. 5.
    Trater, A. M., Alavi, S., & Rizvi, S. S. H. (2005). Food Research International, 38, 709–719.CrossRefGoogle Scholar
  6. 6.
    Rożeń, A., Bakker, R. A., & Baldyga, J. (2001). Chemical Engineering Research and Design, 79, 938–942.CrossRefGoogle Scholar
  7. 7.
    Noon, R., & Hochstetler, T. (1982). Fuel alcohol U.S.A., July/August, 14–23, 32–33.Google Scholar
  8. 8.
    Carr, M. E., & Doane, W. M. (1984). Biotechnology and Bioengineering, 26, 1252–1257.CrossRefGoogle Scholar
  9. 9.
    Miller, S., & Hester, R. (2007). Chemical Engineering Communications, 194, 185–102.Google Scholar
  10. 10.
    Lee, S. H., Inoue, S., Teramoto, Y., & Endo, T. (2010). Bioresource Technology, 101, 9645–9649.CrossRefGoogle Scholar
  11. 11.
    Lee, S., Teramoto, Y., & Endo, T. (2009). Bioresource Technology, 100, 275–279.CrossRefGoogle Scholar
  12. 12.
    Kadam, K. L., Chin, C. Y., & Brown, L. W. (2009). Environmental Progress Sustainable Energy, 28, 89–98.CrossRefGoogle Scholar
  13. 13.
    Karuppuchamy, V., & Muthukumarappan, K. (2009). Bioenergy Engineering Conference, 11–14 October 2009, Bellevue, Washington. ASABE Paper No. BIO-097989.Google Scholar
  14. 14.
    Karunanithy, C., & Muthukumarappan, K. (2010). Applied Biochemistry and Biotechnology, 162, 264–279.CrossRefGoogle Scholar
  15. 15.
    Karunanithy, C., & Muthukumarappan, K. (2011). Biosystems Engineering, 109, 37–51.CrossRefGoogle Scholar
  16. 16.
    AOAC (2011). Official Methods of Analysis. 18th ed., Revision 4. Association of Official Analytical Chemists, Washington, DC.Google Scholar
  17. 17.
    Beck, M. F., Johnson, R. D., & Baker, C. S. (1990). Applied Biochemistry and Biotechnology, 24(25), 407–414.CrossRefGoogle Scholar
  18. 18.
    Corredor, D. Y., Sun, X. S., Salazar, J. M., Hohn, K. L., & Wang, D. (2008). Journal Biobased Mater. Bioenergy, 2, 43–50.CrossRefGoogle Scholar
  19. 19.
    Blasi, D. A., Drouillard, J., Titgemeyer, E. C., Paisley, S. I., & Brouk, M. J. (2000). Soybean Hulls, Composition and Feeding Value for Beef and Dairy Cattle. Kansas State University, KS, USA. Available from: www.ksre.ksu.edu/library/lvstk2/mf2438.pdf. Accessed November 2, 2010.
  20. 20.
    Schirmer-Michel, A. C., Flôres, S. H., Hertz, P. F., Matos, G. S., & Záchia, A. (2008). Bioresource Technology, 99, 2898–2904.CrossRefGoogle Scholar
  21. 21.
    Huisman, M. M. H., Schols, H. A., & Voragen, A. G. J. (1998). Carbohydrate Polymers, 37, 87–95.CrossRefGoogle Scholar
  22. 22.
    Snyder, H. E., & Kwon, T. W. (1987). In Soybean Utilization (pp. 60). Van Nostrand Reinhold, New York, NY.Google Scholar
  23. 23.
    Stombaugh, S. K., Jung, H. G., Orf, J. H., & Somers, D. A. (2000). Crop Science, 40, 408–412.CrossRefGoogle Scholar
  24. 24.
    De Mesa, N. J. E., Alavi, S., Singh, N., Shi, Y.-C., Dogan, H., & Sang, Y. (2009). Journal of Food Engineering, 90(2), 262–270.CrossRefGoogle Scholar
  25. 25.
    Lue, S., Hsieh, F., & Huff, H. F. (1991). Cereal Chemistry, 68, 227–234.Google Scholar
  26. 26.
    Brucato, A. (1982). U.S. Patent 4,347,100.Google Scholar
  27. 27.
    Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., & Chen, J. (2010). Applied Biochemistry and Biotechnology, 162, 1872–1880.CrossRefGoogle Scholar
  28. 28.
    Huisman, M. M. H., Schols, H. A., & Voragen, A. G. J. (1999). Carbohydrate Polymers, 38, 299–307.CrossRefGoogle Scholar
  29. 29.
    Guan, X., & Yao, H. (2008). Food Chemistry, 106, 345–351.CrossRefGoogle Scholar
  30. 30.
    Luo, C., Brink, D., & Blanch, W. (2002). Biomass Bioenergetics, 22, 125–138.CrossRefGoogle Scholar
  31. 31.
    Pienkos, P. T., & Zhang, M. (2009). Cellulose, 16, 743–762.CrossRefGoogle Scholar
  32. 32.
    Martin, C., Marcet, M., & Thomsen, A. (2008). Bioresource, 3, 670–683.Google Scholar
  33. 33.
    Olsson, L., & Hanh-Hägerdal, B. (1996). Enzyme and Microbial Technology, 18, 312–331.CrossRefGoogle Scholar
  34. 34.
    Banerjee, N., Bhatnagar, R., & Viswanathan, L. (1981). European Journal of Applied Microbiology and Biotechnology, 11, 226–228.CrossRefGoogle Scholar
  35. 35.
    Thomsen, M. H., Thygesen, A., & Thomsen, A. B. (2009). Applied Microbiology and Biotechnology, 83, 447–455.CrossRefGoogle Scholar
  36. 36.
    Martin, C., Alriksson, B., Sjöde, A., Nilvebrant, N. O., & Jönsson, L. J. (2007). Applied Biochemistry and Biotechnology, 137, 339–352.CrossRefGoogle Scholar
  37. 37.
    Kumar, P., Barrett, D., Delwiche, M., & Stroeve, P. (2009). Industrial and Engineering Chemistry Research, 48, 3713–3729.CrossRefGoogle Scholar
  38. 38.
    Maiorella, B., Blanch, H. W., & Wilke, C. R. (1983). Biotechnology and Bioengineering, 25, 103–121.CrossRefGoogle Scholar
  39. 39.
    Phowchinda, O., Delia-Dupuy, M. L., & Strehaiano, P. (1995). Biotechnology Letters, 17, 237–242.CrossRefGoogle Scholar
  40. 40.
    Pampulha, M. E., & Loureiro, V. (1989). Biotechnology Letters, 11, 269–274.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Juhyun Yoo
    • 1
  • Sajid Alavi
    • 1
    Email author
  • Praveen Vadlani
    • 1
  • Keith C. Behnke
    • 1
  1. 1.Department of Grain Science and IndustryKansas State UniversityManhattanUSA

Personalised recommendations