Advertisement

Applied Biochemistry and Biotechnology

, Volume 166, Issue 2, pp 470–478 | Cite as

Fermentation of Reactive-Membrane-Extracted and Ammonium-Hydroxide-Conditioned Dilute-Acid-Pretreated Corn Stover

  • David L. Grzenia
  • S. Ranil Wickramasinghe
  • Daniel J. Schell
Article

Abstract

Acid-pretreated biomass contains various compounds (acetic acid, etc.) that are inhibitory to fermentative microorganisms. Removing or deactivating these compounds using detoxification methods such as overliming or ammonium hydroxide conditioning (AHC) improves sugar-to-ethanol yields. In this study, we treated the liquor fraction of dilute-acid-pretreated corn stover using AHC and a new reactive membrane extraction technique, both separately and in combination, and then the sugars in the treated liquors were fermented to ethanol with the glucose–xylose-fermenting bacterium, Zymomonas mobilis 8b. We performed reactive extraction with mixtures of octanol/Alamine 336 or oleyl alcohol/Alamine 336. The best ethanol yields and rates were achieved for oleyl alcohol-extracted hydrolysates followed by AHC hydrolysates, while octanol-extracted hydrolysates were unfermentable because highly toxic octanol was found in the hydrolysate. Adding olive oil significantly improved yields for octanol-extracted hydrolysate. Additional work is underway to determine if this technology is a cost-effective alternative to traditional hydrolysate conditioning processes.

Keywords

Pretreatment Bioethanol Membrane Extraction Fermentation 

Notes

Acknowledgments

Funding for this work was provided by the US Department of Energy’s Office of the Biomass Program. Funding for Colorado State University was provided by subcontracts with the National Renewable Energy Laboratory (KXDJ-0-30622-02, ZFT-8-88524-01). We wish to thank Ali Mohagheghi and Gary McMillen for help with the detoxification and fermentation processes.

References

  1. 1.
    Agblevor, F. A., Fu, J., Hames, B., & Mcmillan, J. D. (2004). Identification of microbial inhibitory functional groups in corn stover hydrolysate by carbon-13 nuclear magnetic resonance spectroscopy. Applied Biochemistry and Biotechnology, 119, 97–120.CrossRefGoogle Scholar
  2. 2.
    Almeida, J. R., Bertilsson, M., Gorwa-Grauslund, M. F., Gorsisch, S., & Liden, G. (2009). Metabolic effect of furaldehydes and impacts on biotechnological processes. Applied Microbiology and Biotechnology, 82, 625–639.CrossRefGoogle Scholar
  3. 3.
    Alriksson, B., Horvath, I., Sjöde, A., Nilvebrant, N., & Jönsson, L. (2005). Ammonium hydroxide detoxification of spruce acid hydrolysates. Applied Biochemistry and Biotechnology, 121–124, 911–922.CrossRefGoogle Scholar
  4. 4.
    Alriksson, B., Sjöde, A., Nilvebrant, N., & Jönsson, L. (2006). Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates. Applied Biochemistry and Biotechnology, 129–132, 599–611.CrossRefGoogle Scholar
  5. 5.
    Amidon, T. E., & Liu, S. (2009). Water-based wood biorefinery. Biotechnology Advances, 27, 542–550.CrossRefGoogle Scholar
  6. 6.
    Chan, J. K. S., & Duff, S. J. B. (2010). Methods for mitigation of bio-oil extract toxicity. Bioresource Technology, 101, 3755–3759.CrossRefGoogle Scholar
  7. 7.
    Gamage, J., Lam, H., & Zhang, Z. (2010). Bioethanol production from lignocellulosic biomass. A review. J Biobas Mat Bioener, 4, 3–11.CrossRefGoogle Scholar
  8. 8.
    Gawronski, R., & Wrzesinska, B. (2000). Kinetics of solvent extraction in hollow-fiber contactors. J Mem Sci, 168, 213–222.CrossRefGoogle Scholar
  9. 9.
    Grzenia, D. L., Schell, D. J., & Wickramasinghe, S. R. (2008). Membrane extraction for removal of acetic acid from biomass hydrolysates. J Mem Sci, 322, 189–195.CrossRefGoogle Scholar
  10. 10.
    Grzenia, D. L., Schell, D. J., & Wickramasinghe, S. R. (2010). Detoxification of biomass hydrolysates by reactive membrane extraction. J Mem Sci, 348, 6–12.CrossRefGoogle Scholar
  11. 11.
    Huang, J. H., Ramaswamy, S., Tschirner, U. W., & Ramarao, B. V. (2008). A review of separation technologies in current and future biorefineries. Separation and Purification Technology, 62, 1–21.CrossRefGoogle Scholar
  12. 12.
    Jennings, E. W., & Schell, D. J. (2011). Conditioning of dilute acid pretreated corn stover hydrolysate liquors by treatment with lime or ammonium hydroxide to improve conversion of sugars to ethanol. Bioresource Technology, 102, 1240–1245.CrossRefGoogle Scholar
  13. 13.
    Kapucu, H., & Mehmetoglu, U. E. (1998). Strategies for reducing solvent toxicity in extractive ethanol fermentation. Applied Biochemistry and Biotechnology, 75, 205–214.CrossRefGoogle Scholar
  14. 14.
    Lee, Y. M., Kang, J. S., Nam, S. Y., & Choi, C. H. (2001). Removal of acetic acid with amine extractants from fermentations broth using hydrophobic hollow-fiber membrane contactor. Separation Science and Technology, 36, 457–471.CrossRefGoogle Scholar
  15. 15.
    Luo, L., Van der Voet, E., Huppes, G. A., & Udo de Haes, H. (2009). Allocation issues in LCA methodology: a case study of corn stover-based fuel ethanol. International Journal of Life Cycle Assessment, 14, 529–539.CrossRefGoogle Scholar
  16. 16.
    Lipnizki, F. (2010). Membrane process opportunities and challenges in the bioethanol industry. Desalination, 250, 1067–1069.CrossRefGoogle Scholar
  17. 17.
    Mohagheghi, A., Dowe, N., Schell, D., Chou, Y.-C., Eddy, C., & Zhang, M. (2004). Performance of a newly developed integrant of Zymomonas mobilis for ethanol production on corn stover hydrolysate. Biotechnology Letters, 26, 321–325.CrossRefGoogle Scholar
  18. 18.
    Mohagheghi, A., Ruth, M., & Schell, D. J. (2006). Conditioning hemicellulose hydrolysate for fermentation: effects of overliming pH on sugar and ethanol yields. Process Biotechnology, 41, 1806–1811.CrossRefGoogle Scholar
  19. 19.
    Perlack, R. D., Wright, L. L., Turhollow, A. F., Graham, R. L., Stokes, B. J., & Erbach, D. C. (2005). Biomass as feedstock for a bioenergy and bioproducts industry: The feasibility of a billion-ton annual supply. Oak Ridge: Oak Ridge National Laboratory. DOE/GO-102005-2135, ORNL/TM-2005/66.CrossRefGoogle Scholar
  20. 20.
    Ranatunga, D. T., Jervis, J., Helm, R. F., Mcmillan, J. D., & Hatzis, C. (1997). Identification of inhibitory components toxic towards Zymomonas mobilis CP4 (pZB5) xylose fermentation. Applied Biochemistry and Biotechnology, 67, 185–198.CrossRefGoogle Scholar
  21. 21.
    Schlesinger, R., Götzinger, G., Sixta, H., Friedl, A., & Harasek, M. (2006). Evaluation of alkali resistant nanofiltration membranes for the separation of hemicellulose from concentrated alkaline process liquors. Desalination, 192, 303–314.CrossRefGoogle Scholar
  22. 22.
    Sivakumar, G., Vail, D. R., Xu, J. F., Burner, D. M., Lay, J. O., Ge, X. M., et al. (2010). Bioethanol and biodiesel: Alternative liquid fuels for future generations. Engineering in Life Science, 10, 8–18.CrossRefGoogle Scholar
  23. 23.
    Sjoman, E., Manttari, M., Nystrom, M., Koivikko, H., & Heikkila, H. (2008). Xylose recovery by nanofiltration from different hemicellulose hydrolysate feeds. J Mem Sci, 310, 268–277.CrossRefGoogle Scholar
  24. 24.
    Steffes, D. W. (1996). A national energy stability policy, (De)Regulation of energy: Intersecting business, economics and policy. In Conference proceedings, pp 275–282.Google Scholar
  25. 25.
    Offeman, R. D., Stephenson, S. R., Franqui, D., Cline, J. L., Robertson, G. H., & Orts, W. J. (2008). Extraction of ethanol with higher alcohol solvents and their toxicity to yeast. Separation and Purification Technology, 63, 444–451.CrossRefGoogle Scholar
  26. 26.
    Wang, Y., Luo, G., Cai, W., Wang, Y., & Dai, Y. (2002). Membrane extraction for sulfuric acid removal from waste water. Separation Science and Technology, 37, 1163–1177.CrossRefGoogle Scholar
  27. 27.
    Yang, S., Pelletier, A. D., Lu, S. Y. T., & Brown, D. S. (2010). The Zymomonas mobilis regulator hfq contributes to tolerance against multiple lignocellulosic pretreatment inhibitors. BMC Microbiology, 10, 1–35.CrossRefGoogle Scholar
  28. 28.
    Yabannavar, V. M., & Wang, D. I. C. (1991). Strategies for reducing solvent toxicity in extractive fermentations. Biotechnology and Bioengineering, 37, 716–722.CrossRefGoogle Scholar
  29. 29.
    Zautsen, R. R., Maugeri-Filho, F., Vaz-Rossell, C. E., Straathof, A. J. J., Van der Wielen, L. A. M., & de Bont, J. A. M. (2009). Liquid–liquid extraction of fermentation inhibiting compounds in lignocellulose hydrolysate. Biotechnology and Bioengineering, 102, 1354–1360.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • David L. Grzenia
    • 1
  • S. Ranil Wickramasinghe
    • 2
  • Daniel J. Schell
    • 3
  1. 1.Department of Chemical and Biological EngineeringColorado State UniversityFort CollinsUSA
  2. 2.Department of Chemical EngineeringUniversity of ArkansasFayettevilleUSA
  3. 3.National Bioenergy CenterNational Renewable Energy LaboratoryGoldenUSA

Personalised recommendations