Applied Biochemistry and Biotechnology

, Volume 166, Issue 2, pp 336–347

Xylanase and β-Xylosidase Production by Aspergillus ochraceus: New Perspectives for the Application of Wheat Straw Autohydrolysis Liquor

  • Michele Michelin
  • Maria de Lourdes T. M. Polizeli
  • Denise S. Ruzene
  • Daniel P. Silva
  • António A. Vicente
  • João A. Jorge
  • Héctor F. Terenzi
  • José A. Teixeira
Article

Abstract

The xylanase biosynthesis is induced by its substrate—xylan. The high xylan content in some wastes such as wheat residues (wheat bran and wheat straw) makes them accessible and cheap sources of inducers to be mainly applied in great volumes of fermentation, such as those of industrial bioreactors. Thus, in this work, the main proposal was incorporated in the nutrient medium wheat straw particles decomposed to soluble compounds (liquor) through treatment of lignocellulosic materials in autohydrolysis process, as a strategy to increase and undervalue xylanase production by Aspergillus ochraceus. The wheat straw autohydrolysis liquor produced in several conditions was used as a sole carbon source or with wheat bran. The best conditions for xylanase and β-xylosidase production were observed when A. ochraceus was cultivated with 1% wheat bran added of 10% wheat straw liquor (produced after 15 min of hydrothermal treatment) as carbon source. This substrate was more favorable when compared with xylan, wheat bran, and wheat straw autohydrolysis liquor used separately. The application of this substrate mixture in a stirred tank bioreactor indicated the possibility of scaling up the process to commercial production.

Keywords

Xylanase β-xylosidase Wheat bran Wheat straw autohydrolysis liquor Bioreactor 

References

  1. 1.
    Myerly, R. C., Nicholson, M. D., Katzen, R., & Taylor, J. M. (1981). Chemtech, 11, 186–192.Google Scholar
  2. 2.
    Moure, A., Gullón, P., Domínguez, H., & Parajó, J. C. (2006). Process Biochemistry, 41, 1913–1923.CrossRefGoogle Scholar
  3. 3.
    Garrote, G., Domínguez, H., & Parajó, J. C. (2002). Journal of Food Engineering, 52, 211–218.CrossRefGoogle Scholar
  4. 4.
    Garrote, G., Falqué, E., Domínguez, H., & Parajó, J. C. (2007). Bioresource Technology, 98, 1951–1957.CrossRefGoogle Scholar
  5. 5.
    Ebringerova, A., & Heinze, T. (2000). Macromolecular Rapid Communications, 21, 542–556.CrossRefGoogle Scholar
  6. 6.
    Abdel-Sater, M. A., & El-Said, A. H. M. (2001). International Biodeterioration and Biodegradation, 47, 15–21.CrossRefGoogle Scholar
  7. 7.
    Polizeli, M. L. T. M., Rizzatti, A. C. S., Monti, R., Terenzi, H. F., Jorge, J. A., & Amorim, D. S. (2005). Applied Microbiology and Biotechnology, 67, 577–591.CrossRefGoogle Scholar
  8. 8.
    Liu, C., Sun, Z.-T., Du, J.-H., & Wang, J. (2008). Journal of Industrial Microbiology and Biotechnology, 35(7), 703–711.CrossRefGoogle Scholar
  9. 9.
    Polizeli, M. L. T. M. (2009). Properties and commercial applications of xylanases from fungi. In M. Rai (Ed.), Advances in fungal biotechnology (Vol. 1, pp. 82–108). New Delhi: IK International Publisher.Google Scholar
  10. 10.
    Katapodis, P., Christakopoulou, V., Kekos, D., & Christakopoulou, P. (2007). Biochemical Engineering Journal, 35, 136–141.CrossRefGoogle Scholar
  11. 11.
    Subramanyan, S., & Prema, P. (2002). Critical Reviews in Biotechnology, 22, 33–64.CrossRefGoogle Scholar
  12. 12.
    Reddy, V., Reddy, P., Pillay, B., & Singh, S. (2002). Process Biochemistry, 37, 1221–1228.CrossRefGoogle Scholar
  13. 13.
    Adams, P. R. (1990). Mycopathologia, 112, 35–37.CrossRefGoogle Scholar
  14. 14.
    Miller, G. H. (1959). Analytical Chemistry, 31, 426–429.CrossRefGoogle Scholar
  15. 15.
    Kersters-Hilderson, H., Claeyssens, M., Doorslaer, E. V., Saman, E., & Bruyne, C. K. (1982). Methods in Enzymology, 83, 631–639.CrossRefGoogle Scholar
  16. 16.
    Techapun, C., Poosaran, N., Watanabe, M., & Sasaki, K. (2003). Process Biochemistry, 38, 1327–1340.CrossRefGoogle Scholar
  17. 17.
    Michelin, M., Peixoto-Nogueira, S. C., Betini, J. H. A., Silva, T. M., Jorge, J. A., Terenzi, H. F., et al. (2010). Bioprocess Biosyst Engineer, 33, 813–821.CrossRefGoogle Scholar
  18. 18.
    Michelin, M., Polizeli, M. L. T. M., Silva, D. P., Ruzene, D. S., Vicente, A. A., Jorge, J. A., Terenzi, H. F., & Teixeira, J. A. (2011). Journal of Industrial Microbiology and Biotechnology. doi:10.1007/s10295-011-0987-7.
  19. 19.
    Parajó, J. C., Garrote, G., Cruz, J. M., & Dominguez, H. (2004). Trends in Food Science and Technology, 15, 115–120.CrossRefGoogle Scholar
  20. 20.
    Sanchez, Z. B., & Bautista, J. (1988). Enzyme and Microbial Technology, 10, 315–318.CrossRefGoogle Scholar
  21. 21.
    Felipe, M. G. A., Mancilha, I. M., Vitolo, M., Roberto, I. C., Silva, S. S., & Rosa, S. A. M. (1993). Arquivos de Biologia e Tecnologia, 36, 103–114.Google Scholar
  22. 22.
    Olsson, L., & Hahn-Hagerdal, B. (1996). Enzyme and Microbial Technology, 18, 312–331.CrossRefGoogle Scholar
  23. 23.
    Kalathenos, P., Baranyi, J., Sutherland, J. P., & Roberts, T. A. (1995). International Journal of Food Microbiology, 25, 63–74.CrossRefGoogle Scholar
  24. 24.
    Moyo, S., Gashe, B. A., Collison, E. K., & Mpuchane, S. (2003). International Journal of Food Microbiology, 85, 87–100.CrossRefGoogle Scholar
  25. 25.
    Fang, H. Y., Chang, S. M., Hsieh, M. C., & Fang, T. J. (2007). Journal of Molecular Catalysis B: Enzymatic, 49, 36–42.CrossRefGoogle Scholar
  26. 26.
    Coelho, G. D., & Carmona, E. C. (2003). Journal of Basic Microbiology, 43(4), 269–277.CrossRefGoogle Scholar
  27. 27.
    Haltrich, D., Nidetsky, B., Kulbe, K. D., Steiner, W., & Zupancic, S. (1996). Bioresource Technology, 58, 137–161.CrossRefGoogle Scholar
  28. 28.
    Beg, Q. K., Bhushan, B., Kapoor, M., & Hoondal, G. S. (2000). Enzyme and Microbial Technology, 27, 459–466.CrossRefGoogle Scholar
  29. 29.
    Siedenberg, D., Gerlach, S. R., Czwalinna, A., Schugerl, K., Giuseppin, M. L. F., & Hunik, J. (1997). Journal of Biotechnology, 56, 205–216.CrossRefGoogle Scholar
  30. 30.
    Hoq, M. M., Hempel, C., & Deckwer, W.-D. (1994). Journal of Biotechnology, 37, 49–59.CrossRefGoogle Scholar
  31. 31.
    Palma, M. B., Milagres, A. M. F., Prata, A. M. R., & de Mancilha, I. M. (1996). Process Biochemistry, 31, 141–145.CrossRefGoogle Scholar
  32. 32.
    Singh, S., du Preez, J. C., Pillay, B., & Prior, B. A. (2000). Applied Microbiology and Biotechnology, 54, 698–704.CrossRefGoogle Scholar
  33. 33.
    Silva, D. P., Pessoa, A., Jr., Roberto, I. C., & Vitolo, M. (2001). Applied Biochemistry and Biotechnology, 91–93, 605–613.CrossRefGoogle Scholar
  34. 34.
    Techapun, C., Poosaran, N., Watanabe, M., & Sasaki, K. (2003). Journal of Bioscience and Bioengineering, 95, 298–301.Google Scholar
  35. 35.
    Chipeta, Z. A., du Preez, J. C., & Christopher, L. (2008). Journal of Industrial Microbiology and Biotechnology, 35(6), 587–594.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Michele Michelin
    • 1
    • 2
  • Maria de Lourdes T. M. Polizeli
    • 2
  • Denise S. Ruzene
    • 1
    • 3
  • Daniel P. Silva
    • 1
    • 3
  • António A. Vicente
    • 1
  • João A. Jorge
    • 2
  • Héctor F. Terenzi
    • 2
  • José A. Teixeira
    • 1
  1. 1.IBB–Institute for Biotechnology and Bioengineering, Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  2. 2.Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão PretoUniversity of São PauloRibeirão PretoBrazil
  3. 3.Institute of Technology and ResearchUniversity TiradentesAracajuBrazil

Personalised recommendations