Advertisement

Applied Biochemistry and Biotechnology

, Volume 166, Issue 1, pp 146–158 | Cite as

Lipids Containing Polyunsaturated Fatty Acids Synthesized by Zygomycetes Grown on Glycerol

  • Stamatia Bellou
  • Anna Moustogianni
  • Anna Makri
  • George Aggelis
Article

Abstract

Several strains of Zygomycetes cultivated on glycerol produced mycelia rich in lipids containing higher amounts of neutral lipids (NL) than glycolipids plus sphingolipids and phospholipids (P), while biosynthesis of P in Mortierella ramanniana, Mucor sp., and Cunninghamella echinulata occurred though NL accumulation process was in progress. Polyunsaturated fatty acids (PUFA) concentration gradually decreased in all lipid fractions of M. ramanniana during growth. In contrast, in C. echinulata concentration of both linoleic and γ-linolenic acids increased with time, especially in P. Taking for granted that the main function of PUFA is associated to their participation in mycelial membranes, we could suppose that biosynthesis of these fatty acids is associated to mycelial growth. However, this is accurate only for some Zygomycetes, e.g., M. ramanniana. On the contrary, PUFA biosynthesis in C. echinulata persists after growth cessation, suggesting that in this species biosynthetic ability is not a strictly growth-associated process. Phosphatidyl-inositol and phosphatidyl-choline were the major P classes in C. echinulata and M. ramanniana, respectively. In M. ramanniana, a decrease of PUFA concentration was noticed even when mycelia were incubated in low temperature (conditions that normally favor PUFA biosynthesis), indicating that PUFA biosynthesis in this fungus is associated to primary metabolism.

Keywords

Zygomycetes Neutral lipids Polar lipids Fatty acids distribution γ-linolenic acid Bioreactor Temperature 

Abbreviations

X (g/l)

Total dry biomass

L/X (%)

Lipids in dry biomass

Xf

Lipid-free biomass

SCO

Single cell oil

NL

Neutral lipids

G+S

Glycolipids plus Sphingolipids

P

Phospholipids

PC

Phosphatidyl-choline

PI

Phosphatidyl-inositol

PE

Phosphatidylethanolamine

PS

Phosphatidylserine

PA

Phosphatidic acid

TAG

Triacylglycerols

GC

Gas chromatography

PUFA

Polyunsaturated fatty acids

GLA

γ-linolenic acid

Notes

Acknowledgments

Financial support was provided by the project “Synergasia” entitled “BIOREF—Development of a biorefinery for the valorization of residues produced during biodiesel manufacture towards the production of biodegradable polymers and other high added value products” funded by the Greek Secretariat of Research and Technology and the society PETTAS S.A.

Supplementary material

12010_2011_9411_MOESM1_ESM.doc (8.3 mb)
ESM 1 (DOC 8494 kb)

References

  1. 1.
    Aggelis, G., Pina, M., Ratomahenina, R., Arnaud, A., Graille, J., Galzy, P., et al. (1987). Oléagineux, 42, 379–386.Google Scholar
  2. 2.
    Botha, A., Kock, J. L. F., Coetzee, D. J., & Botes, P. J. (1997). Antonie Van Leeuwenhoek, 71, 201–206.CrossRefGoogle Scholar
  3. 3.
    Certik, M., Sereke, B., & Sajbidor, J. (1993). Acta Biotechnologica, 2, 193–196.CrossRefGoogle Scholar
  4. 4.
    Chen, H. C., & Liu, T. M. (1997). Enzyme and Microbial Technology, 21, 137–142.CrossRefGoogle Scholar
  5. 5.
    Fakas, S., Galiotou-Panayotou, M., Papanikolaou, S., Komaitis, M., & Aggelis, G. (2007). Enzyme and Microbial Technology, 40, 1321–1327.CrossRefGoogle Scholar
  6. 6.
    Gema, H., Kavadia, A., Dimou, D., Tsagou, V., Komaitis, M., & Aggelis, G. (2002). Applied Microbiology and Biotechnology, 58, 303–307.CrossRefGoogle Scholar
  7. 7.
    Kavadia, A., Komaitis, M., Chevalot, I., Blanchard, F., Marc, I., & Aggelis, G. (2001). Journal of the American Oil Chemists’ Society, 78, 341–346.CrossRefGoogle Scholar
  8. 8.
    Papanikolaou, S., Sarantou, S., Komaitis, M., & Aggelis, G. (2004). Journal of Applied Microbiology, 97, 867–875.CrossRefGoogle Scholar
  9. 9.
    Sakuradani, E., & Shimizu, S. (2009). Journal of Biotechnology, 144, 31–36.CrossRefGoogle Scholar
  10. 10.
    Ykema, A., Verbree, E. C., Van Verseveld, H. W., & Smit, H. (1986). Antonie Van Leeuwenhoek, 52, 491–506.CrossRefGoogle Scholar
  11. 11.
    Fan, Y. Y., & Chapkin, R. S. (1998). Journal of Nutrition, 128, 1411–1414.Google Scholar
  12. 12.
    Kenny, F., Pinder, S., Ellis, I., Gee, J., Nicholson, R., Bryce, R., et al. (2000). International Journal of Cancer, 85, 643–648.CrossRefGoogle Scholar
  13. 13.
    Reddy, D. R., Prassas, V. S. S. V., & Das, U. N. (1998). Journal of Clinical Neuroscience, 5, 36–39.CrossRefGoogle Scholar
  14. 14.
    Belch, J. J. F., & Muir, A. (1998). In Proceedings of the Nutrition Society, 57, 563–569.CrossRefGoogle Scholar
  15. 15.
    Dines, K. C., Cameron, N. E., & Cotter, M. A. (1995). Journal of Pharmacology and Experimental Therapeutics, 273, 49–55.Google Scholar
  16. 16.
    Certik, M., & Shimizu, S. (1999). Journal of Bioscience and Bioengineering, 87, 1–14.CrossRefGoogle Scholar
  17. 17.
    Fakas, S., Bellou, S., Makri, A., & Aggelis, G. (2009). In: G. Aggelis (Ed), Microbial conversions of raw glycerol (pp. 9–18). Hauppauge: Nova Science Publishers Inc.Google Scholar
  18. 18.
    Fakas, S., Makri, A., Mavromati, M., Tselepi, M., & Aggelis, G. (2009). Bioresource Technology, 100, 6118–6120.CrossRefGoogle Scholar
  19. 19.
    Fakas, S., Papanikolaou, S., Galiotou-Panayotou, M., Komaitis, M., & Aggelis, G. (2009). In A. Pandey, Ch Larroche, C. R. Soccol, & C. G. Dussap (Eds.), New Horizons in Biotechnology (pp. 53–75). New Delhi: Asiatech Publishers Inc.Google Scholar
  20. 20.
    Huang, C., Zong, M., Wu, H., & Liu, Q. (2009). Bioresource Technology, 100, 4535–4538.CrossRefGoogle Scholar
  21. 21.
    Liang, Y., Cui, Y., Trushenski, J., & Blackburn, J. (2010). Bioresource Technology, 101, 7581–7586.CrossRefGoogle Scholar
  22. 22.
    Papanikolaou, S., Chevalot, I., Komaitis, M., Aggelis, G., & Marc, I. (2001). Antonie Van Leeuwenhoek, 80, 215–224.CrossRefGoogle Scholar
  23. 23.
    Papanikolaou, S., Chevalot, I., Komaitis, M., Marc, I., & Aggelis, G. (2002). Applied Microbiology and Biotechnology, 58, 308–312.CrossRefGoogle Scholar
  24. 24.
    Peng, X., & Chen, H. (2008). Bioresource Technology, 99, 3885–3889.CrossRefGoogle Scholar
  25. 25.
    Zhu, L. Y., Zong, M. H., & Wu, H. (2008). Bioresource Technology, 99, 7881–7885.CrossRefGoogle Scholar
  26. 26.
    Wagner, A., & Daum, G. (2005). Biochemical Society Transactions, 33, 1174–1177.CrossRefGoogle Scholar
  27. 27.
    Carman, G. M., & Henry, S. A. (1999). Progress in Lipid Research, 38, 361–399.CrossRefGoogle Scholar
  28. 28.
    Daum, G., Lees, N. D., Bard, M., & Dickson, R. (1998). Yeast, 14, 1471–1510.CrossRefGoogle Scholar
  29. 29.
    André, A., Chatzifragkou, A., Diamantopoulou, P., Sarris, D., Philippoussis, A., Galiotou-Panayotou, M., et al. (2009). Engineering in Life Sciences, 6, 468–478.CrossRefGoogle Scholar
  30. 30.
    Chatzifragkou, A., Fakas, S., Galiotou-Panayotou, M., Komaitis, M., Aggelis, G., & Papanikolaou, S. (2010). European Journal of Lipid Science and Technology, 112, 1048–1057.CrossRefGoogle Scholar
  31. 31.
    Makri, A., Fakas, S., & Aggelis, G. (2010). Bioresource Technology, 101, 2351–2358.CrossRefGoogle Scholar
  32. 32.
    Papanikolaou, S., Diamantopoulou, P., Chatzifragkou, A., Philippoussis, A., & Aggelis, G. (2010). Energy & Fuels, 24, 4078–4086.CrossRefGoogle Scholar
  33. 33.
    Ratledge, C., & Wynn, J. (2002). Advances in Applied Microbiology, 51, 1–51.CrossRefGoogle Scholar
  34. 34.
    Losel, D. (1989). Fungal lipids. In C. Ratledge & S. G. Wilkinson (Eds.), Microbial Lipids (Vol. 1, pp. 699–794). London: Academic.Google Scholar
  35. 35.
    Folch, J., Lees, M., & Sloane-Stanley, G. (1957). Journal of Biological Chemistry, 199, 833–841.Google Scholar
  36. 36.
    Fakas, S., Papanikolaou, S., Galiotou-Panayotou, M., Komaitis, M., & Aggelis, G. (2006). Applied Microbiology and Biotechnology, 73, 676–683.CrossRefGoogle Scholar
  37. 37.
    AFNOR. (1984). Recueil des normes françaises des corps gras, grains oléagineux et produits dérives (3rd ed., p. 95). Paris: Association Française pour normalisation.Google Scholar
  38. 38.
    Hansson, L., & Dostalek, M. (1988). Applied Microbiology and Biotechnology, 28, 240–246.CrossRefGoogle Scholar
  39. 39.
    Hiruta, O., Futamura, T., Takebe, H., Satoh, A., Kamisaka, Y., Yokochi, T., et al. (1996). Journal of Fermentation and Bioengineering, 82, 366–370.CrossRefGoogle Scholar
  40. 40.
    Chen, H. C., & Chang, C. C. (1996). Biotechnology Progress, 12, 338–341.CrossRefGoogle Scholar
  41. 41.
    Kennedy, M., Reader, S., Davies, J., Rhoades, A., & Silby, H. (1994). Journal of Industrial Microbiology, 13, 212–216.CrossRefGoogle Scholar
  42. 42.
    Metz, B., & Kossoen, N. W. F. (1977). Bioengineering, 19, 781–799.CrossRefGoogle Scholar
  43. 43.
    Papp, T., Velayos, A., Bartok, T., Eslava, A., Vagvolgyi, C., & Iturriaga, E. (2005). Applied Microbiology and Biotechnology, 69, 526–531.CrossRefGoogle Scholar
  44. 44.
    Velayos, A., Blasco, J. L., Alvarez, M. I., Iturriaga, E. A., & Eslava, A. P. (2000). Planta, 210, 938–946.CrossRefGoogle Scholar
  45. 45.
    Velayos, A., Eslava, A. P., & Iturriaga, E. A. (2000). European Journal of Biochemistry, 267, 1–12.CrossRefGoogle Scholar
  46. 46.
    Velayos, A., Papp, T., Aguilar-Elena, R., Fuentes-Vicente, M., Eslava, A. P., Iturriga, E. A., et al. (2003). Current Genetics, 43, 112–120.Google Scholar
  47. 47.
    Ahmed, S. U., Singh, S. K., Pandey, A., Kanjilal, S., & Prasad, R. B. N. (2008). Applied Biochemistry and Biotechnology, 151, 599–609.CrossRefGoogle Scholar
  48. 48.
    Dyal, S. D., & Narine, S. S. (2005). Food Research International, 38, 45–467.CrossRefGoogle Scholar
  49. 49.
    Shimizu, S., Kawashima, H., Shinmen, Y., Akimoto, K., & Yamada, H. (1988). Journal of the American Chemical Society, 65, 1455–1459.CrossRefGoogle Scholar
  50. 50.
    Nakahara, T., Yokochi, T., Kamisaka, Y., & Suzuki, O. (1992). Industrial Applications of Single Cell Oils (pp. 61–97). Champaign: American Oil Chemists Society Press.Google Scholar
  51. 51.
    Batrakov, S., Konova, I., Sheichenko, V., Esipov, S., Galanina, L., Istratova, L., et al. (2004). Phytochemistry, 65, 1239–1246.CrossRefGoogle Scholar
  52. 52.
    Aki, T., Matsumoto, Y., Morinaga, T., Kawamoto, S., Shigeta, S., Ono, K., et al. (1998). Journal of Fermentation and Bioengineering, 86, 504–507.CrossRefGoogle Scholar
  53. 53.
    Certik, M., & Shimizu, S. (2003). Biologia (Bratisl), 58, 1101–1110.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Stamatia Bellou
    • 1
  • Anna Moustogianni
    • 1
  • Anna Makri
    • 1
  • George Aggelis
    • 1
  1. 1.Unit of Microbiology, Division of Genetics, Cell and Development Biology, Department of BiologyUniversity of PatrasPatrasGreece

Personalised recommendations