Applied Biochemistry and Biotechnology

, Volume 166, Issue 1, pp 64–71 | Cite as

Sox9 Is Upstream of MicroRNA-140 in Cartilage

  • Yukio Nakamura
  • Xinjun He
  • Hiroyuki Kato
  • Shigeyuki Wakitani
  • Tatsuya Kobayashi
  • Sumiko Watanabe
  • Atsumi Iida
  • Hideaki Tahara
  • Matthew L. Warman
  • Ramida Watanapokasin
  • John H. Postlethwait
Article

Abstract

MicroRNA-140 (miR-140) is specifically expressed in developing cartilage tissues. We have previously reported that miR-140 plays an important role during palatal cartilage development by modulating platelet-derived growth factor receptor alpha (pdgfra) in zebrafish. However, the regulatory mechanism of miR-140 in cartilage is still unknown. Using developing zebrafish, sox9a mutant (sox9a−/−) and sox9b mutant (sox9b−/−) zebrafish and SOX9 small interfering RNA in human chondrocytes, T/C-28 cells, we found that miR-140 is regulated by the cartilage master transcription regulator Sox9 in zebrafish and mammalian cells.

Keywords

MicroRNA-140 (miR-140) Sox9 Cartilage Zebrafish T/C-28 siRNA In situ hybridization RT-PCR 

References

  1. 1.
    He, L., & Hannon, G. J. (2004). Nature Rev Genet., 5, 522–531.CrossRefGoogle Scholar
  2. 2.
    He, X., Eberhart, J. K., & Postlethwait, J. H. (2009). Journal of Cellular and Molecular Medicine, 13, 606–618.CrossRefGoogle Scholar
  3. 3.
    Berezikov, E., van de Guryev, V., Belt, J., Wienholds, E., Plasterk, R. H., & Cuppen, E. (2005). Cell, 12, 21–24.CrossRefGoogle Scholar
  4. 4.
    Ason, B., Darnell, D. K., Wittbrodt, B., Berezikov, E., Kloosterman, W. P., Wittbrodt, J., et al. (2006). PNAS, 103, 14385–14389.CrossRefGoogle Scholar
  5. 5.
    Tuddenham, L., Wheeler, G., Ntounia-Fousara, S., Waters, J., Hajihosseini, M. K., Clark, I., et al. (2006). FEBS Letters, 580, 4214–4217.CrossRefGoogle Scholar
  6. 6.
    Wienholds, E., Kloosterman, W. P., Miska, E., Alvarez-Saavedra, E., de Berezikov, E., Bruijn, E., et al. (2005). Science, 309, 310–311.CrossRefGoogle Scholar
  7. 7.
    Oh, C.-D., Maity, S. N., Lu, J. F., Zhang, J., Liang, S., Coustry, F., et al. (2010). PLoS ONE, 5, 1–12.Google Scholar
  8. 8.
    Akiyama, H., Chaboissier, M. C., Martin, J. F., Schedl, A., & de Crombrugghe, B. (2002). Genes & Development, 16, 2813–2828.CrossRefGoogle Scholar
  9. 9.
    Foster, J. W., Dominguez-Steglich, M. A., Guioli, S., Kwok, C., Weller, P. A., Stevanovic, M., et al. (1994). Nature, 372, 525–530.CrossRefGoogle Scholar
  10. 10.
    Wagner, T., Wirth, J., Meyer, J., Zabel, B., Held, M., Zimmer, J., et al. (1994). Cell, 79, 1111–1120.CrossRefGoogle Scholar
  11. 11.
    Yan, Y. L., Willoughby, J., Liu, D., Crump, J. G., Wilson, C., Miller, C. T., et al. (2005). Development, 132, 1069–1083.CrossRefGoogle Scholar
  12. 12.
    Hata, K., Nishimura, R., Muramatsu, S., Matsuda, A., Matsubara, T., Amano, K., et al. (2008). JCI., 118, 3098–3108.CrossRefGoogle Scholar
  13. 13.
    Furumatsu, T., Tsuda, M., Taniguchi, N., Tajima, Y., & Asahara, H. (2005). Journal of Biological Chemistry, 280, 8343–8350.CrossRefGoogle Scholar
  14. 14.
    Hattori, T., Coustry, F., Stephens, S., Eberspaecher, H., Takigawa, M., Yasuda, H., et al. (2008). Nuc Acids Res., 36, 3011–3024.CrossRefGoogle Scholar
  15. 15.
    Tardif, G., Hum, D., Pelletier, J. P., Duval, N., & Martel-Pelletier, J. (2009). BMC Musculoskeletal Disorders, 10, 148.CrossRefGoogle Scholar
  16. 16.
    Nakamura, Y., Yamamoto, K., He, X., Otsuki, B., Kim, Y., Murao, H., et al. (2011). Nature Communications 2:251. doi:10.1038/ncomms1242.
  17. 17.
    Miyaki, S., Sato, T., Inoue, A., Otsuki, S., Ito, Y., Yokoyama, S., et al. (2010). Genes Dev, 24, 1173–1185.Google Scholar
  18. 18.
    Li, L., Meng, T., Jia, Z., Zhu, G., & Shi, B. (2010). American Journal of Medical Genetics, 152A, 856–862.CrossRefGoogle Scholar
  19. 19.
    Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., & Schilling, T. F. (1995). Developmental Dynamics, 203, 253–310.CrossRefGoogle Scholar
  20. 20.
    Thisse, C., Thisse, B., Schilling, T. F., & Postlethwait, J. H. (1993). Development, 119, 1203–1215.Google Scholar
  21. 21.
    Nakamura, Y., Inloes, J. B., Katagiri, T., & Kobayashi T. (2011). Chondrocyte-specific microRNA-140 regulates endochondral bone development and targets Dnpep to modulate bone morphogenetic protein signaling. Molecular and Cellular Biology. 31, 3019–28.CrossRefGoogle Scholar
  22. 22.
    Kou, I., & Ikegawa, S. (2004). Journal of Biological Chemistry, 279, 50942–50948.CrossRefGoogle Scholar
  23. 23.
    Walker, M. B., & Kimmel, C. B. (2007). Biotechnic and Histochemistry, 82, 23–28.CrossRefGoogle Scholar
  24. 24.
    Wright, E., Hargrave, M. R., Christiansen, J., Cooper, L., Kun, J., Evans, T., et al. (1995). Nature Genetics, 9, 15–20.CrossRefGoogle Scholar
  25. 25.
    Kageyama, R., Niwa, Y., & Shimojo, H. (2009). Molecules and Cells, 27, 497–502.CrossRefGoogle Scholar
  26. 26.
    Monteys, A. M., Spengler, R. M., Wan, J., Tecedor, L., Lennox, K. A., Xing, Y., et al. (2010). RNA, 16, 495–505.CrossRefGoogle Scholar
  27. 27.
    Ying, S. Y., & Lin, S. L. (2006). Journal of Biological Sciences, 13, 5–15.Google Scholar
  28. 28.
    Lee, Y., Kim, M., Han, J., Yeom, K. H., Lee, S., Baek, S. H., et al. (2004). EMBO Journal, 23, 4051–4060.CrossRefGoogle Scholar
  29. 29.
    van de Wetering, M., & Clevers, H. (1992). EMBO Journal, 11, 3039–3044.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Yukio Nakamura
    • 1
  • Xinjun He
    • 2
  • Hiroyuki Kato
    • 1
  • Shigeyuki Wakitani
    • 3
  • Tatsuya Kobayashi
    • 4
  • Sumiko Watanabe
    • 5
  • Atsumi Iida
    • 5
  • Hideaki Tahara
    • 6
  • Matthew L. Warman
    • 7
  • Ramida Watanapokasin
    • 8
  • John H. Postlethwait
    • 2
  1. 1.Department of Orthopaedic SurgeryShinshu University School of MedicineMatsumotoJapan
  2. 2.Institute of NeuroscienceUniversity of OregonEugeneUSA
  3. 3.Department of Orthopaedic SurgeryOsaka City University Graduate School of MedicineOsakaJapan
  4. 4.Endocrine UnitMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  5. 5.Department of Molecular and Developmental Biology, Institute of Medical ScienceUniversity of TokyoTokyoJapan
  6. 6.Department of Surgery and Bioengineering, Advanced Clinical Research Center, Institute of Medical ScienceUniversity of TokyoTokyoJapan
  7. 7.Howard Hughes Medical Institute, Departments of Orthopaedic Surgery and GeneticsChildren’s Hospital Boston and Harvard Medical SchoolBostonUSA
  8. 8.Department of Biochemistry, Faculty of MedicineSrinakharinwirot UniversityBangkokThailand

Personalised recommendations