Applied Biochemistry and Biotechnology

, Volume 166, Issue 1, pp 13–21 | Cite as

Solvent-Free Production of Bioflavors by Enzymatic Esterification of Citronella (Cymbopogon winterianus) Essential Oil

  • Natália Paroul
  • Luana Paula Grzegozeski
  • Viviane Chiaradia
  • Helen Treichel
  • Rogério L. Cansian
  • J. Vladimir Oliveira
  • Débora de Oliveira
Article

Abstract

Enzymatic esterification of citronella essential oil towards the production of geranyl and citronellyl esters may present great scientific and technological interest due to the well-known drawbacks of the chemical-catalyzed route. In this context, this work reports the maximization of geranyl and citronellyl esters production by esterification of oleic and propionic acids in a solvent-free system using a commercial immobilized lipase as catalyst. Results of the reactions showed that the strategy adopted for the experimental design proved to be useful in evaluating the effects of the studied variables on the reaction conversion using Novozym 435 as catalyst. The operating conditions that maximized the production of each ester were determined, leading, in a general way, to conversions of about 90% for all systems. New experimental data on enzymatic esterification of crude citronella essential oil for geranyl and citronellyl esters production in solvent-free system are reported in this work.

Keywords

Cymbopogon winterianus Essential oil Esterification Lipase 

Notes

Acknowledgments

The authors thank CNPq, CAPES, FAPERGS, and URI-Campus de Erechim for the financial support and scholarships.

References

  1. 1.
    Malcata, F. X., Reyes, H. R., Garcia, H. S., Hill, C. G., & Amundson, C. H. (1990). Journal of the American Oil Chemists’ Society, 67, 890–910.CrossRefGoogle Scholar
  2. 2.
  3. 3.
    He, X.-L., Chen, B.-Q., & Tan, T.-W. (2002). Journal of Molecular Catalysis B: Enzymatic, 18, 333–339.CrossRefGoogle Scholar
  4. 4.
    Tan, T., Chen, B.-Q., & Ye, H. (2006). Biochemical Engineering Journal, 29, 41–45.CrossRefGoogle Scholar
  5. 5.
    Treichel, H., Oliveira, D., Mazutti, M. A., Di Luccio, M., & Oliveira, J. V. (2010). Food and Bioprocess Technology, 3, 182–196.CrossRefGoogle Scholar
  6. 6.
    Güvenç, A., Kapucu, N., & Mehmetoglu, Ü. (2002). Process Biochemistry, 38, 379–386.CrossRefGoogle Scholar
  7. 7.
    Karra-Chaabouni, M., Pulvin, S., Touraud, D., & Thomas, D. (1996). Biotechnology Letters, 18, 1083–1088.CrossRefGoogle Scholar
  8. 8.
    Karra-Châabouni, M., Ghamghi, H., Bezzine, S., Rekik, A., & Gargouri, Y. (2006). Process Biochemistry, 41, 1692–1698.CrossRefGoogle Scholar
  9. 9.
    Gryglewicz, S., Jadownicka, E., & Czerniak, A. (2000). Biotechnology Letters, 22, 1379–1398.CrossRefGoogle Scholar
  10. 10.
    Converti, A., Del Borghi, A., Gandolfi, R., Molinaripalazzi, F., Perego, E., & Zilli, M. (2002). Enzyme and Microbial Technology, 30, 216–223.CrossRefGoogle Scholar
  11. 11.
    Irimescu, R., Saito, T., & Kato, K. (2004). Journal of Molecular Catalysis B: Enzymatic, 27, 69–73.CrossRefGoogle Scholar
  12. 12.
    Ikeda, Y., & Kurokawa, Y. (2001). Journal of the American Oil Chemists’ Society, 78, 1099–1103.CrossRefGoogle Scholar
  13. 13.
    Castro, H. F., Oliveira, P. C., & Soares, C. A. F. (1997). Ciência e Tecnologia de Alimentos, 17, 197–205.Google Scholar
  14. 14.
    Paroul, N., Grzegozeski, L. P., Chiaradia, V., Treichel, H., Cansian, R. L., Oliveira, J. V., et al. (2010). Journal of Chemical Technology and Biotechnology, 85, 1636–1641.CrossRefGoogle Scholar
  15. 15.
    Paroul, N., Grzegozeski, L. P., Chiaradia, V., Treichel, H., Cansian, R. L., Oliveira, J. V., et al. (2010). Bioprocess and Biosystems Engineering, 33, 583–589.CrossRefGoogle Scholar
  16. 16.
    Kumar, R., Modak, J., & Madras, G. (2005). Biochemical Engineering Journal, 23, 199–202.CrossRefGoogle Scholar
  17. 17.
    Santos, J. C., Bueno, T., Ros, P. C. M., & Castro, H. F. (2007). Journal of Chemical Technology and Biotechnology, 82, 956–961.CrossRefGoogle Scholar
  18. 18.
    Chang, S. W., Shaw, J. F., Shieh, C. H., & Shieh, C. J. (2006). Journal of Agricultural and Food Chemistry, 54, 7125–7129.CrossRefGoogle Scholar
  19. 19.
    De, B. K., Chatterjee, T., & Bhattacharyya, D. K. (1999). Journal of the American Oil Chemists’ Society, 76, 1501–1504.CrossRefGoogle Scholar
  20. 20.
    Bartling, K., Thompson, J. U. S., Pfromm, P. H., Czermak, P., & Rezak, M. E. (2001). Biotechnology and Bioengineering, 75, 676–681.CrossRefGoogle Scholar
  21. 21.
    Yee, L., Akoh, C. C., & Phillips, R. S. (1997). Journal of the American Oil Chemists’ Society, 74, 255–260.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Natália Paroul
    • 1
    • 2
  • Luana Paula Grzegozeski
    • 2
  • Viviane Chiaradia
    • 2
  • Helen Treichel
    • 2
  • Rogério L. Cansian
    • 2
  • J. Vladimir Oliveira
    • 2
  • Débora de Oliveira
    • 2
  1. 1.Programa de Pós-Graduação em BiotecnologiaUniversidade de Caxias do SulCaxias do SulBrazil
  2. 2.Universidade Regional Integrada do Alto Uruguai e das Missões, URI—Campus de ErechimErechimBrazil

Personalised recommendations