Applied Biochemistry and Biotechnology

, Volume 165, Issue 7–8, pp 1611–1627 | Cite as

Thermodynamics of Chitinase Partitioning in Soy Lecithin Liposomes and Their Storage Stability

  • Lucía F. Cano-Salazar
  • Antonio J. Juárez-Ordáz
  • Karla M. Gregorio-Jáuregui
  • José L. Martínez-Hernández
  • Jesús Rodríguez-Martínez
  • Anna Ilyina
Article

Abstract

The goal of this study was to define the partitioning behavior of chitinase from Trichoderma spp. in soy lecithin liposomes, using a thermodynamic approach based on the partitioning variation with temperature. An effort has been made to define the liposomes, as well as free and immobilized enzyme stability during storage at 4 and 25 °C. The partition coefficients (Ko/w) were greater than 1; therefore, the standard free energies of the enzyme transfer were negative, indicating an affinity of the enzymes for encapsulation in liposomes. The enthalpy calculation led to the conclusion that the process is exothermic. The presence of enzyme decreased the liposome storage stability from 70 days to an approximately 20 days at 25 °C and 30 days at 4 °C. Monitoring of the liposome’s diameter demonstrated that their size and concentration decreased during storage. The liposome’s diameters ranged from 1.06 to 3.30 μm. The higher percentage of liposome corresponded to a diameter range from 1.06 to 1.34 μm. This percentage increased during storage. There were no evidences for liposome fusion process. The stability of immobilized enzyme was increased in comparison with free chitinase.

Keywords

Chitinase Microencapsulation Soy lecithin liposomes Storage stability Immobilized enzyme 

References

  1. 1.
    Lorito, M., Harman, G. E., Hayes, C. K., Broadway, R. M., Tronsmo, A., Woo, S. L., et al. (1993). Phytopathology, 83, 302–307.CrossRefGoogle Scholar
  2. 2.
    Prapagdee, B., Kotchadat, K., Kumsopa, A., & Visarathanonth, N. (2007). Bioresource Technology, 7, 1353–1358.CrossRefGoogle Scholar
  3. 3.
    Singh, P. P., Shin, Y. C., Park, C. S., & Chung, Y. R. (1999). Phytopathology, 89, 92–99.CrossRefGoogle Scholar
  4. 4.
    Prapagdee, B., Kuekulvong, C., & Mongkolsuk, S. (2008). International Journal of Biological Sciences, 4, 330–337.Google Scholar
  5. 5.
    Estrella-Favret, A., Juarez-Ordaz, A. J., Cano-Salazar, L. F., Martínez-Hernández, J. L., & Ilina, A. (2008). Ciencia Cierta, 15, 26–29.Google Scholar
  6. 6.
    Baek, J. M., Howell, C. R., & Kenerley, C. M. (1999). Current Genetics, 35, 41–50.CrossRefGoogle Scholar
  7. 7.
    El-Katatny, M. H., Somitsch, W., Robra, K. H., El-Katatny, M. S., & Gübitz, G. M. (2000). Food Technology and Biotechnology, 38, 173–180.Google Scholar
  8. 8.
    Elad, Y., Chet, I., & Henis, Y. (1982). Canadian Journal of Microbiology, 28, 719–725.CrossRefGoogle Scholar
  9. 9.
    Cook, R. J., & Baker, K. F. (1983). The nature and practice of biological control of plant pathogens. St. Paul: The American Phytopathological Society.Google Scholar
  10. 10.
    Dekker, J. (1982). In J. Dekker & S. G. Georgopoulos (Eds.), In countermeasures for avoiding fungicide resistance (pp. 177–186). Wageningen: Pudoc.Google Scholar
  11. 11.
    Balvantin-García, C., Ilina, A., Martínez-Hernández, J. L., Cerda-Ramírez, F., & Lira, R. H. (2009). Ciencia Cierta, 19, 20–24.Google Scholar
  12. 12.
    Anitha, A., & Rabeeth, M. (2010). African Journal of Plant Science, 4, 061–066.Google Scholar
  13. 13.
    Joublanc, E., Vázquez-Gutiérrez, B. B., Ramírez-Esquivel, G., Martínez-Hernández, J. L., & Iliná, A. (2010). In C. Regalado & B. E. García (Eds.), In innovations in food science and food biotechnology in developing countries (pp. 73–84). Querétaro: AMECA.Google Scholar
  14. 14.
    Wang, S. L., & Chio, S. H. (1998). Enzyme and Microbial Technology, 22, 634–640.CrossRefGoogle Scholar
  15. 15.
    Taylor, T. M., Davidson, P. M., Bruce, B. D., & Weiss, J. (2005). Critical Reviews in Food Science and Nutrition, 45, 587–605.CrossRefGoogle Scholar
  16. 16.
    Chaize, B., Colletier, J. P., Winterhalter, M., & Fournier, D. (2004). Artificial Cells, Blood Substitutes, and Biotechnology, 32, 67–75.CrossRefGoogle Scholar
  17. 17.
    Bangham, A. D. (1993). Chemistry and Physics of Lipids, 64, 275–285.CrossRefGoogle Scholar
  18. 18.
    Ávila, C. M., Gómez, A., & Martínez, F. (2003). Acta Farm Bonaerense, 22, 119–126.Google Scholar
  19. 19.
    Beare-Rogers, J. L., Bonekamp-Nasner, A., & Dieffenbacher, A. (1992). Pure and Applied Chemistry, 64, 447–454.CrossRefGoogle Scholar
  20. 20.
    Bradford, M. M. (1976). Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  21. 21.
    Lozano, H. R., & Martínez, F. (2006). Brazilian Journal of Pharmaceutical Sciences, 42, 601–613.Google Scholar
  22. 22.
    Ávila, C. M., & Martínez, F. (2003). Chemical & Pharmaceutical Bulletin, 51, 237–240.CrossRefGoogle Scholar
  23. 23.
    Sturges, H. (1926). Journal of the American Statistical Association, 21, 65–66.Google Scholar
  24. 24.
    Li, H. M., Sullivan, R., Moy, M., Kobayashi, D. Y., & Belanger, F. C. (2004). Mycology, 96, 526–536.CrossRefGoogle Scholar
  25. 25.
    Bewick, V., Cheek, L., & Ball, J. (2004). Critical Care, 8, 130–136.CrossRefGoogle Scholar
  26. 26.
    Martínez, F., & Gomez, A. (2002). Journal of Physical Organic Chemistry, 15, 874–880.CrossRefGoogle Scholar
  27. 27.
    Howell, B. A., & Chauhan, A. (2009). Langmuir, 25, 12056–12065.CrossRefGoogle Scholar
  28. 28.
    Sulkowski, W. W., Pentak, D., Nowak, K., & Sulkowska, A. (2005). Journal of Molecular Structure, 744, 737–747.CrossRefGoogle Scholar
  29. 29.
    Tanford, C. (1973). The hydrophobic effect: Formation of micelles and biological membranes. New York: Wiley.Google Scholar
  30. 30.
    Lampe, J. W., Zhengzheng, L., Dmochowski, I. J., Ayyaswamy, P. S., & Eckmann, D. M. (2010). Langmuir, 26, 2452–2459.CrossRefGoogle Scholar
  31. 31.
    Ikonen, M., Murtomäki, L., & Kontturi, K. (2010). Colloids and Surfaces. B, Biointerfaces, 78, 275–282.CrossRefGoogle Scholar
  32. 32.
    Pérez-Molina, A. I., Juárez-Ordaz, A. J., Gregorio-Jáuregui, K. M., Segura-Ceniceros, E. P., Martínez-Hernández, J. L., Rodríguez-Martínez, J., et al. (2011). Journal of Molecular Catalysis B: Enzymatic. doi:10.1016/j.molcatb.2011.05.004.
  33. 33.
    Choi, N. S., Jeung-Ho, H., Pil, J. M., & Seung-Ho, K. (2005). Journal of Biochemistry and Molecular Biology, 38, 177–181.CrossRefGoogle Scholar
  34. 34.
    Suhail, A., Khan, A. A., & Husain, Q. (2005). Journal of Chemical Technology and Biotechnology, 80, 198–205.CrossRefGoogle Scholar
  35. 35.
    Tang, J., Esmon, N., Ferlan, I., & Fesmire, A. (1981). Thrombosis Research, 24, 359–365.CrossRefGoogle Scholar
  36. 36.
    Folders, J., Algra, J., Roelofs, M. S., Van-Loon, L. C., Tommassen, J., & Bitter, W. (2001). The Journal of Bacteriology, 183, 7044–7052.CrossRefGoogle Scholar
  37. 37.
    León-Joublanc, E. (2009). M.S. thesis. University Autonomous of Coahuila, Coahuila, Mexico.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lucía F. Cano-Salazar
    • 1
  • Antonio J. Juárez-Ordáz
    • 1
  • Karla M. Gregorio-Jáuregui
    • 1
  • José L. Martínez-Hernández
    • 1
  • Jesús Rodríguez-Martínez
    • 1
  • Anna Ilyina
    • 1
  1. 1.Department of Biotechnology, Chemistry SchoolUniversidad Autónoma de CoahuilaSaltilloMexico

Personalised recommendations