Applied Biochemistry and Biotechnology

, Volume 165, Issue 7–8, pp 1577–1586 | Cite as

Proteome Analysis of Abundant Proteins Extracted from the Leaf of Gynura procumbens (Lour.) Merr



Gynura procumbens (Lour.) Merr. is a traditionally used medicinal plant to decrease cholesterol level, reduce high blood pressure, control diabetics, and for treatment of cancer. In our present study, a proteomic approach was applied to study the proteome of the plant that had never analyzed before. We have identified 92 abundantly expressed proteins from the leaves of G. procumbens (Lour.) Merr. Amongst the identified proteins was miraculin, a taste-masking agent with high commercial value. Miraculin made up ∼0.1% of the total protein extracted; the finding of miraculin gave a great commercial value to G. procumbens (Lour.) Merr. as miraculin’s natural source is limited while the production of recombinant miraculin faced challenges of not being able to exhibit the taste-masking effect as in the natural miraculin. We believe the discovery of miraculin in G. procumbens (Lour.) Merr., provides commercial feasibility of miraculin in view of the availability of G. procumbens (Lour.) Merr. that grow wildly and easily in tropical climate.


Gynura procumbens (Lour.) Merr Proteomics Leaf extract Protein profiling Miraculin 



This work was supported by RU grant from Universiti Sains Malaysia (Project number: 1001/PFARMASI/815034). We thank the National Institute of Pharmaceutical and Nutraceutical, the Ministry of Science, Technology and Innovation, Malaysia for the use of the mass spectrometry instrument to analyze proteins, the Institute for Graduate Studies for providing scholarship to Hew Chaw-Sen.


  1. 1.
    Wiart, W. (2006). Medicinal plants of the Asia-Pacific: drugs for the future? Singapore: World Scientific.CrossRefGoogle Scholar
  2. 2.
    Perry, L. M. (1980). Medicinal plants of east and southeast Asia. Cambridge: MIT Press.Google Scholar
  3. 3.
    Jenie, R. I., & Meiyanto, E. (2007). Majalah Farmasi Indonesia, 18, 81–87.Google Scholar
  4. 4.
    Puangpronpitag, D., Chaichanadee, S., Naowaratwattana, W., Sittiwet, C., Thammasarn, K., Luerang, A., et al. (2010). Asian Journal of Plant Science, 9, 146–151.CrossRefGoogle Scholar
  5. 5.
    Zhang, X. F., & Tan, B. K. (2000). Singapore Medical Journal, 41, 9–13.Google Scholar
  6. 6.
    Iskander, M. N., Song, Y., Coupar, I. M., & Jiratchariyakul, W. (2002). Plant Food for Human Nutrition, 57, 233–244.CrossRefGoogle Scholar
  7. 7.
    Gam, L. H., & Aishah, L. (2002). Journal Biosains, 13, 27–34.Google Scholar
  8. 8.
    López, J. L. (2007). Journal of Chromatogr B, 849, 190–202.CrossRefGoogle Scholar
  9. 9.
    Isaacson, T., Damasceno, C. M. B., Saravanan, R. S., He, Y., Catala, C., Saladie, M., et al. (2006). Nature Protocols, 1, 769–774.CrossRefGoogle Scholar
  10. 10.
    Katam, R., Basha, S. M., Suravajhala, P., & Pechan, T. (2010). Journal of Proteome Research, 9, 2236–2254.CrossRefGoogle Scholar
  11. 11.
    Wang, W., Vignani, R., Scali, M., & Cresti, M. (2006). Electrophoresis, 27, 2782–2786.CrossRefGoogle Scholar
  12. 12.
    Schiltz, S., Gallardo, K., Huart, M., Negroni, L., Sommerer, N., & Burstin, J. (2004). Plant Physiology, 135, 2241–2260.CrossRefGoogle Scholar
  13. 13.
    Giavalisco, P., Nordhoff, E., Kreitler, T., Klöppel, K.-D., Lehrach, H., Klose, J., et al. (2005). Proteomics, 5, 1902–1913.CrossRefGoogle Scholar
  14. 14.
    Nam, M. H., Heo, E. J., Kim, J. Y., Kim, S. I., Kwon, K.-H., Seo, J. B., et al. (2003). Proteomics, 3, 2351–2367.CrossRefGoogle Scholar
  15. 15.
    Hew, C.-S., & Gam, L.-H. (2010). Biotechnol & Biotech Eq, 24(4), 2132–2136.CrossRefGoogle Scholar
  16. 16.
    Partridge, M., & Murphy, D. J. (2009). Plant Physiology and Biochemistry, 47, 796–806.CrossRefGoogle Scholar
  17. 17.
    Gibbs, B. F., Alli, I., & Mulligan, C. (1996). Nutrition Research, 16, 1619–1630.CrossRefGoogle Scholar
  18. 18.
    Sun, H.-J., Kataoka, H., Yano, M., & Ezura, H. (2007). Plant Biotech Journal, 5, 768–777.CrossRefGoogle Scholar
  19. 19.
    Bachchu, M. A. A., Jin, S.-B., Park, J.-W., Boo, K.-H., Sun, H.-J., Kim, Y.-W., et al. (2011). J. Korean Soc Appl Biol Chem, 54, 24–29.CrossRefGoogle Scholar
  20. 20.
    Akbudak, N., Tezcan, H., Akbudak, B., & Seniz, V. (2006). Scientia Horticulturae, 109, 107–112.CrossRefGoogle Scholar
  21. 21.
    Mhamdi, A., Hager, J., Chaouch, S., Queval, G., Han, Y., Taconnat, L., et al. (2010). Plant Physiology, 153, 1144–1160.CrossRefGoogle Scholar
  22. 22.
    Streatfield, S. J., Weber, A., Kinsman, E. A., Hausler, R. E., Li, J., Post-Beittenmiller, D., et al. (1999). The Plant Cell, 11, 1609–1622.CrossRefGoogle Scholar
  23. 23.
    Herrmann, K. M., & Weaver, L. M. (1999). Annu Rev of Plant Physiol and Plant Mol Biol, 50, 473–503.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.School of Pharmaceutical SciencesUniversiti Sains MalaysiaPenangMalaysia

Personalised recommendations