Advertisement

Applied Biochemistry and Biotechnology

, Volume 165, Issue 7–8, pp 1519–1531 | Cite as

Gluconacetobacter hansenii subsp. nov., a High-Yield Bacterial Cellulose Producing Strain Induced by High Hydrostatic Pressure

  • Han-Jing Ge
  • Shuang-Kui Du
  • De-Hui Lin
  • Jun-Na Zhang
  • Jin-Le Xiang
  • Zhi-Xi Li
Article

Abstract

Strain M438, deposited as CGMCC3917 and isolated from inoculums of bacterial cellulose (BC) producing strain screened in homemade vinegar and then induced by high hydrostatic pressure treatment (HHP), has strong ability to produce BC more than three times as that of its initial strain. It is the highest yield BC-producing strain ever reported. In this paper, M438 was identidied as Gluconacetobacter hansenii subsp. nov. on the basis of the results obtained by examining it phylogenetically, phenotypically, and physiologically–biochemically. Furthermore, the genetic diversity of strain M438 and its initial strain was examined by amplified fragment length polymorphism. The results indicated that strain M438 was a deletion mutant induced by HHP, and the only deleted sequence showed 99% identity with 24,917–24,723 bp in the genome sequence of Ga. hansenii ATCC23769, and the complement gene sequence was at 24,699–25,019 bp with local tag GXY_15142, which codes small multidrug resistance (SMR) protein. It can be inferred that SMR might be related to inhibiting BC production to a certain extent.

Keywords

Phenotypically Physiologically–biochemically Phylogenetically 16S rRNA genes Gluconacetobacter hansenii subsp. nov. Genetic diversity 

Abbreviation

CGMCC

China General Microbiological Culture Collection

Notes

Acknowledgments

The authors are thankful to Dr. Wu Ruiqin for technical support and Dr. Liu Liu for valuable suggestions. This work was supported by the Fundamental Research Funds for the Central Universities (QN2009072).

References

  1. 1.
    Keshk, S. M. A. S., Razek, T. M. A., & Sameshima, K. (2006). African Journal of Biotechnology, 5, 1519–1523.Google Scholar
  2. 2.
    Dellaglio, F., Cleenwerck, I., Felis, G. E., Engelbeen, K., Janssens, D., & Marzotto, M. (2005). International Journal of Systematic and Evolutionary Microbiology, 55, 2365–2370.CrossRefGoogle Scholar
  3. 3.
    Dutta, D., & Gachhui, R. (2007). International Journal of Systematic and Evolutionary Microbiology, 57, 353–357.CrossRefGoogle Scholar
  4. 4.
    Garrity, G. M., Bell, J. A., & Lilburn, T. G. (2004). Part C: Family II. Acetobacteraceae genus VIII. Gluconacetobacter. In M. Siever & J. Swings (Eds.), Bergey’s manual of systematic bacteriology (Vol. 2, pp. 72–74). New York: Springer.Google Scholar
  5. 5.
    Lisdiyanti, P., Navarro, R. R., Uchimura, T., & Komagata, K. (2006). International Journal of Systematic and Evolutionary Microbiology, 56, 2101–2111.CrossRefGoogle Scholar
  6. 6.
    Park, J. K., Park, Y. H., & Jung, J. Y. (2003). Bioprocess E, 8, 83–88.CrossRefGoogle Scholar
  7. 7.
    Wan, Y. Z., Hong, L., Jia, S. R., Huang, Y., Zhu, Y., Wang, Y. L., et al. (2006). Composites Science and Technology, 66, 1825–1832.CrossRefGoogle Scholar
  8. 8.
    Klemm, D., Schumann, D., Udhardt, U., & Marsch, S. (2001). Progress in Polymer Science, 26, 1561–1603.CrossRefGoogle Scholar
  9. 9.
    Keshk, S., & Sameshima, K. (2006). Enzyme and Microbial Technology, 40, 4–8.CrossRefGoogle Scholar
  10. 10.
    Nguyen, V. T., Gidley, M. J., & Dykes, G. A. (2008). Food Microbiology, 25, 471–478.CrossRefGoogle Scholar
  11. 11.
    Hong, F., & Qiu, K. Y. (2008). Carbohydrate Polymers, 72, 545–549.CrossRefGoogle Scholar
  12. 12.
    Backdahl, H., Esguerra, M., Delbro, D., Risberg, B., & Gatenholm, P. (2008). Journal of Tissue Engineering and Regenerative Medicine, 2, 320–330.CrossRefGoogle Scholar
  13. 13.
    Svensson, A., Nicklasson, E., Harrah, T., Panilaitis, B., Kaplan, D. L., Brittberg, M., et al. (2005). Biomaterials, 26, 419–431.CrossRefGoogle Scholar
  14. 14.
    Jonas, R., & Farah, L. F. (1998). Polymer Degradation and Stability, 59, 101–106.CrossRefGoogle Scholar
  15. 15.
    Vandamme, E. J., Baets, S. D., Vanbaelen, A., Joris, K., & De-Wulf, P. (1998). Polymer Degradation and Stability, 59, 93–99.CrossRefGoogle Scholar
  16. 16.
    Anicuta, S. G., Marta, S. F., Traian, Z., & Elena, G. (2007). Nuclear Instruments and Methods in Physics Research B, 265, 434–438.CrossRefGoogle Scholar
  17. 17.
    Sutherland, I. W. (1998). Trends in Biotechnology, 16, 41–46.CrossRefGoogle Scholar
  18. 18.
    Jung, R., Kim, H. S., Kim, Y., Kwon, S. M., Lee, H. S., & Jin, H. J. (2008). Journal of Polymer Science. Part B, 46, 1235–1242.CrossRefGoogle Scholar
  19. 19.
    Nogi, M., & Yano, H. (2008). Advanced Materials, 20, 1849–1852.CrossRefGoogle Scholar
  20. 20.
    Pommet, M., Juntaro, J., Heng, J. Y. Y., Mantalaris, A., Lee, A. F., Wilson, K., et al. (2008). Biomacromolecules, 9, 1643–1651.CrossRefGoogle Scholar
  21. 21.
    Budhiono, A., Rosidi, B., Taher, H., & Iguchi, M. (1999). Carbohydrate Polymers, 40, 37–143.CrossRefGoogle Scholar
  22. 22.
    De-Wulf, P., Joris, K., & Vandamme, E. J. (1996). Journal of Chemical Technology and Biotechnology, 67, 376–380.CrossRefGoogle Scholar
  23. 23.
    Yu, X. B., Bian, Y. R., Quan, W. H., & Liu, W. (1999). Journal of Cell Science and Technology, 7, 63–66 (in Chinese).Google Scholar
  24. 24.
    Vezzi, A., Campanaro, S. D., Angelo, M., Simonato, F., Vitulo, N., Lauro, F. M., et al. (2005). Science, 307, 1459–1461.CrossRefGoogle Scholar
  25. 25.
    Lauro, F. M., Tran, K., Vezzi, A., Vitulo, N., Valle, G., & Bartlett, D. H. (2008). Journal of Bacteriology, 190, 1699–1709.CrossRefGoogle Scholar
  26. 26.
    Liu, F. Z., Zhang, H., & Mu, K. F. (2008). Liquor-Making Science & Technology, 3, 51–53 (in Chinese).Google Scholar
  27. 27.
    Gao, X., Li, J., & Ruan, K. C. (2001). Acta Biochimica et Biophysica Sinica, 33, 77–81 (in Chinese).Google Scholar
  28. 28.
    Wang, S. L., Wu, X. Z., Duan, X. C., & Sun, J. S. (2006). Indian Microbiology, 36, 31–35 (in Chinese).Google Scholar
  29. 29.
    Wu, R. Q., Du, S. K., Li, Z. X., Xing, X. H., Shao, D. Y., Fan, Y. L., et al. (2008). Chinese Journal of Biotechnology, 24, 1068–1074 (in Chinese).Google Scholar
  30. 30.
    Wu, R. Q., Li, Z. X., Shao, D. Y., Fan, Y. L., Zhang, X. L., Li, B., et al. (2008). China Brewing, 10, 37–38 (in Chinese).Google Scholar
  31. 31.
    Wu, R. Q., Li, Z. X., Yang, J. P., Xing, X. H., Shao, D. Y., & Xing, K. L. (2010). Cellulose, 17, 399–405.CrossRefGoogle Scholar
  32. 32.
    Rosa, G. L., Carolis, E. D., Sali, M., Papacchini, M., Riccardi, C., Mansi, A., et al. (2006). Microbiological Research, 161, 150–157.CrossRefGoogle Scholar
  33. 33.
    Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., et al. (1995). Nucleic Acids Research, 23, 4407–4414.CrossRefGoogle Scholar
  34. 34.
    Bay, D. C., & Turner, R. J. (2009). BMC Evolutionary Biology, 9, 140–151.CrossRefGoogle Scholar
  35. 35.
    Takahashi, M., Yukphan, P., Yamada, Y., Suzuki, K. I., Sakane, T., & Nakagawa, Y. (2006). Journal of General and Applied Microbiology, 52, 187–193.CrossRefGoogle Scholar
  36. 36.
    Kimura, M. (1980). Journal of Molecular Evolution, 16, 111–120.CrossRefGoogle Scholar
  37. 37.
    Saitou, N., & Nei, M. (1987). Molecular and Biological Evolution, 4, 406–425.Google Scholar
  38. 38.
    Felsenstein, J. (1981). Journal of Molecular Evolution, 17, 368–376.CrossRefGoogle Scholar
  39. 39.
    Felsenstein, J. (1983). Annual Review of Ecology and Systematics, 14, 313–333.CrossRefGoogle Scholar
  40. 40.
    Felsenstein, J. (1985). Evolution, 39, 783–791.CrossRefGoogle Scholar
  41. 41.
    Dong, X. Z., & Cai, M. Y. (2001). Systemic identification guide book for commonly isolated bacteria (1st ed.). Beijing: Science Press (in Chinese).Google Scholar
  42. 42.
    Buchanan, R. E., & Gibbons, N. E. (1984). Bergey’s manual of determinative bacteriology (8th ed.). Beijing: Science Press (in Chinese).Google Scholar
  43. 43.
    Feng, J., Shi, Q. S., Ouyang, Y. S., & Chen, Y. B. (2009). Chemical Bioengineering, 26, 10–13 (in Chinese).Google Scholar
  44. 44.
    Jung, J. Y., Park, J. K., & Chang, H. N. (2005). Enzyme and Microbial Technology, 37, 347–354.CrossRefGoogle Scholar
  45. 45.
    Hutchens, S. A., Benson, R. S., Evans, B. R., O’Neill, H. M., & Rawn, C. J. (2006). Biomaterials, 27, 4661–4670.CrossRefGoogle Scholar
  46. 46.
    Shehzad, O., Khan, S., Khan, T., & Park, J. K. (2009). Korean Journal of Chemical Engineering, 26, 1689–1692.CrossRefGoogle Scholar
  47. 47.
    Li, H. X., Cao, Y. S., Fu, L. L., & Liu, X. H. (2005). Journal of Microbiology, 25, 50–53 (in Chinese).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Han-Jing Ge
    • 1
  • Shuang-Kui Du
    • 1
  • De-Hui Lin
    • 1
  • Jun-Na Zhang
    • 1
  • Jin-Le Xiang
    • 1
  • Zhi-Xi Li
    • 1
  1. 1.College of Food Science and Engineering, Shaanxi Key Laboratory of Molecular Biology for AgricultureNorthwest A&F UniversityXi’anChina

Personalised recommendations